Dasturlash masalalari
Integer
INTEGER GURUHI TOPSHIRIQLARI (1–30)
Eslatma: Ushbu guruhdagi barcha kirish va chiqish ma’lumotlari butun sonlar. Raqamlar soni ko‘rsatilgan hollarda (ikki xonali, uch xonali va h.k.) ular musbat deb olinadi. Dasturlash terminlari va guruh nomlari (Integer, div, mod, va h.k.) asl holida qoldirildi.
Integer1°. Masofa L santimetrda berilgan. Butun bo‘lishga bo‘lish (div) amali yordamida undagi to‘liq metrlar sonini toping (1 metr = 100 sm).
|
Kirish |
Chiqish |
|
L=120 sm |
to‘liq metr=1 |
|
L=99 sm |
to‘liq metr=0 |
|
L=350 sm |
to‘liq metr=3 |
|
L=1000 sm |
to‘liq metr=10 |
|
L=12345 sm |
to‘liq metr=123 |
Integer2°. Massa M kilogrammda berilgan. div amali yordamida undagi to‘liq tonnalar sonini toping (1 tonna = 1000 kg).
|
Kirish |
Chiqish |
|
M=999 kg |
to‘liq tonna=0 |
|
M=1000 kg |
to‘liq tonna=1 |
|
M=2500 kg |
to‘liq tonna=2 |
|
M=12000 kg |
to‘liq tonna=12 |
|
M=345678 kg |
to‘liq tonna=345 |
Integer3°. Fayl hajmi baytlarda berilgan. div amali yordamida to‘liq kilobaytlar sonini toping (1 KB = 1024 bayt).
|
Kirish |
Chiqish |
|
bayt=1023 |
to‘liq KB=0 |
|
bayt=1024 |
to‘liq KB=1 |
|
bayt=1536 |
to‘liq KB=1 |
|
bayt=4097 |
to‘liq KB=4 |
|
bayt=1234567 |
to‘liq KB=1205 |
Integer4°. A va B musbat butun sonlar (A > B). Uzunligi A bo‘lgan kesmaga, uzunligi B bo‘lgan kesmalar maksimal miqdorda (ustma-ust tushirmasdan) joylashtiriladi. div amali bilan joylashgan B kesmalar sonini toping.
|
Kirish |
Chiqish |
|
A=10, B=3 |
soni=3 |
|
A=25, B=4 |
soni=6 |
|
A=100, B=9 |
soni=11 |
|
A=47, B=5 |
soni=9 |
|
A=13, B=12 |
soni=1 |
Integer5°. A va B musbat butun sonlar (A > B). Uzunligi A bo‘lgan kesmaga, uzunligi B bo‘lgan kesmalar maksimal miqdorda joylashtirilganda, bo‘linmaning qoldig‘i (mod) yordamida A kesmaning band qilinmagan qismi uzunligini toping.
|
Kirish |
Chiqish |
|
A=10, B=3 |
bo‘sh qism=1 |
|
A=25, B=4 |
bo‘sh qism=1 |
|
A=100, B=9 |
bo‘sh qism=1 |
|
A=47, B=5 |
bo‘sh qism=2 |
|
A=58, B=7 |
bo‘sh qism=2 |
Integer6°. Ikki xonali son berilgan. Avval uning chap raqamini (o‘nliklar), so‘ng o‘ng raqamini (birlar) chiqaring. O‘nliklar uchun div, birlar uchun mod ishlating.
|
Kirish |
O‘nliklar |
Birlar |
|
n=10 |
o‘nliklar=1 |
birlar=0 |
|
n=24 |
o‘nliklar=2 |
birlar=4 |
|
n=57 |
o‘nliklar=5 |
birlar=7 |
|
n=99 |
o‘nliklar=9 |
birlar=9 |
|
n=83 |
o‘nliklar=8 |
birlar=3 |
Integer7°. Ikki xonali son berilgan. Uning raqamlari yig‘indisi va ko‘paytmasini toping.
|
Kirish |
Yig‘indi |
Ko‘paytma |
|
n=12 |
yig‘indi=3 |
ko‘paytma=2 |
|
n=34 |
yig‘indi=7 |
ko‘paytma=12 |
|
n=50 |
yig‘indi=5 |
ko‘paytma=0 |
|
n=77 |
yig‘indi=14 |
ko‘paytma=49 |
|
n=86 |
yig‘indi=14 |
ko‘paytma=48 |
Integer8°. Ikki xonali son berilgan. Uning raqamlarini joyini almashtirish orqali hosil bo‘lgan sonni chiqaring.
|
Kirish |
Chiqish |
|
n=12 |
natija=21 |
|
n=40 |
natija=4 |
|
n=58 |
natija=85 |
|
n=90 |
natija=9 |
|
n=73 |
natija=37 |
Integer9°. Uch xonali son berilgan. Bitta div amali yordamida uning birinchi raqamini (yuzliklar) chiqaring.
|
Kirish |
Chiqish |
|
n=100 |
yuzliklar=1 |
|
n=305 |
yuzliklar=3 |
|
n=987 |
yuzliklar=9 |
|
n=450 |
yuzliklar=4 |
|
n=612 |
yuzliklar=6 |
Integer10°. Uch xonali son berilgan. Avval uning oxirgi raqamini (birlar), so‘ng o‘rta raqamini (o‘nliklar) chiqaring.
|
Kirish |
Birlar |
O‘nliklar |
|
n=123 |
birlar=3 |
o‘nliklar=2 |
|
n=405 |
birlar=5 |
o‘nliklar=0 |
|
n=980 |
birlar=0 |
o‘nliklar=8 |
|
n=761 |
birlar=1 |
o‘nliklar=6 |
|
n=612 |
birlar=2 |
o‘nliklar=1 |
Integer11°. Uch xonali son berilgan. Uning raqamlari yig‘indisi va ko‘paytmasini toping.
|
Kirish |
Yig‘indi |
Ko‘paytma |
|
n=123 |
yig‘indi=6 |
ko‘paytma=6 |
|
n=405 |
yig‘indi=9 |
ko‘paytma=0 |
|
n=980 |
yig‘indi=17 |
ko‘paytma=0 |
|
n=761 |
yig‘indi=14 |
ko‘paytma=42 |
|
n=612 |
yig‘indi=9 |
ko‘paytma=12 |
Integer12°. Uch xonali son berilgan. Uni o‘ngdan chapga o‘qish orqali hosil bo‘lgan sonni chiqaring.
|
Kirish |
Chiqish |
|
n=123 |
natija=321 |
|
n=405 |
natija=504 |
|
n=980 |
natija=89 |
|
n=761 |
natija=167 |
|
n=612 |
natija=216 |
Integer13°. Uch xonali son berilgan. Unda chapdan birinchi raqam o‘chirilib, o‘ng tomonga qo‘shib yozilgan. Olingan sonni chiqaring.
|
Kirish |
Chiqish |
|
n=123 |
natija=231 |
|
n=405 |
natija=54 |
|
n=980 |
natija=809 |
|
n=761 |
natija=617 |
|
n=612 |
natija=126 |
Integer14°. Uch xonali son berilgan. Unda o‘ngdan birinchi raqam o‘chirilib, chap tomonga qo‘shib yozilgan. Olingan sonni chiqaring.
|
Kirish |
Chiqish |
|
n=123 |
natija=312 |
|
n=405 |
natija=540 |
|
n=980 |
natija=98 |
|
n=761 |
natija=176 |
|
n=612 |
natija=261 |
Integer15°. Uch xonali son berilgan. Uning yuzliklar va o‘nliklar raqamlarini joyini almashtirib hosil bo‘lgan sonni chiqaring (masalan, 123 → 213).
|
Kirish |
Chiqish |
|
n=123 |
natija=213 |
|
n=405 |
natija=45 |
|
n=980 |
natija=890 |
|
n=761 |
natija=671 |
|
n=612 |
natija=162 |
Integer16°. Uch xonali son berilgan. Uning o‘nliklar va birlar raqamlarini joyini almashtirib hosil bo‘lgan sonni chiqaring (masalan, 123 → 132).
|
Kirish |
Chiqish |
|
n=123 |
natija=132 |
|
n=405 |
natija=450 |
|
n=980 |
natija=908 |
|
n=761 |
natija=716 |
|
n=612 |
natija=621 |
Integer17°. 999 dan katta butun son berilgan. Bitta div va bitta mod amali bilan bu sonning yozuvidagi yuzliklar razryadiga mos raqamni toping.
|
Kirish |
Chiqish |
|
n=1000 |
yuzliklar raqami=0 |
|
n=12345 |
yuzliklar raqami=3 |
|
n=67890 |
yuzliklar raqami=8 |
|
n=2001 |
yuzliklar raqami=0 |
|
n=909999 |
yuzliklar raqami=9 |
Integer18°. 999 dan katta butun son berilgan. Bitta div va bitta mod amali bilan bu sonning yozuvidagi mingliklar razryadiga mos raqamni toping.
|
Kirish |
Chiqish |
|
n=1000 |
mingliklar raqami=1 |
|
n=12345 |
mingliklar raqami=2 |
|
n=67890 |
mingliklar raqami=7 |
|
n=2001 |
mingliklar raqami=2 |
|
n=909999 |
mingliklar raqami=9 |
Integer19°. Kun boshidan N soniya o‘tdi (N — butun). Kun boshidan boshlab o‘tgan to‘liq daqiqalar sonini toping.
|
Kirish |
Chiqish |
|
N=0 s |
to‘liq daqiqa=0 |
|
N=59 s |
to‘liq daqiqa=0 |
|
N=60 s |
to‘liq daqiqa=1 |
|
N=3600 s |
to‘liq daqiqa=60 |
|
N=86399 s |
to‘liq daqiqa=1439 |
Integer20°. Kun boshidan N soniya o‘tdi. Kun boshidan boshlab o‘tgan to‘liq soatlar sonini toping.
|
Kirish |
Chiqish |
|
N=0 s |
to‘liq soat=0 |
|
N=3599 s |
to‘liq soat=0 |
|
N=3600 s |
to‘liq soat=1 |
|
N=7200 s |
to‘liq soat=2 |
|
N=86399 s |
to‘liq soat=23 |
Integer21°. Kun boshidan N soniya o‘tdi. So‘nggi daqiqaning boshidan beri o‘tgan soniyalar sonini toping.
|
Kirish |
Chiqish |
|
N=0 s |
soniya (oxirgi daqiqadan)=0 |
|
N=59 s |
soniya (oxirgi daqiqadan)=59 |
|
N=60 s |
soniya (oxirgi daqiqadan)=0 |
|
N=3661 s |
soniya (oxirgi daqiqadan)=1 |
|
N=86399 s |
soniya (oxirgi daqiqadan)=59 |
Integer22°. Kun boshidan N soniya o‘tdi. So‘nggi soatning boshidan beri o‘tgan soniyalar sonini toping.
|
Kirish |
Chiqish |
|
N=0 s |
soniya (oxirgi soatdan)=0 |
|
N=3599 s |
soniya (oxirgi soatdan)=3599 |
|
N=3600 s |
soniya (oxirgi soatdan)=0 |
|
N=3661 s |
soniya (oxirgi soatdan)=61 |
|
N=86399 s |
soniya (oxirgi soatdan)=3599 |
Integer23°. Kun boshidan N soniya o‘tdi. So‘nggi soatning boshidan beri o‘tgan to‘liq daqiqalar sonini toping.
|
Kirish |
Chiqish |
|
N=0 s |
to‘liq daqiqa (oxirgi soatdan)=0 |
|
N=3599 s |
to‘liq daqiqa (oxirgi soatdan)=59 |
|
N=3600 s |
to‘liq daqiqa (oxirgi soatdan)=0 |
|
N=3661 s |
to‘liq daqiqa (oxirgi soatdan)=1 |
|
N=86399 s |
to‘liq daqiqa (oxirgi soatdan)=59 |
Integer24°. Hafta kunlari quyidagicha raqamlangan: 0 — yakshanba, 1 — dushanba, …, 6 — shanba. K (1–365) berilgan. Yilning K-kuni uchun haftaning kun raqamini aniqlang; bu yilda 1-yanvar dushanba bo‘lgan.
|
Kirish |
Chiqish |
|
K=1 |
kun raqami=1 |
|
K=2 |
kun raqami=2 |
|
K=7 |
kun raqami=0 |
|
K=8 |
kun raqami=1 |
|
K=365 |
kun raqami=1 |
Integer25°. Hafta kunlari: 0 — yakshanba, 1 — dushanba, …, 6 — shanba. K (1–365) berilgan. Yilning K-kuni uchun kun raqamini aniqlang; 1-yanvar payshanba bo‘lgan.
|
Kirish |
Chiqish |
|
K=1 |
kun raqami=4 |
|
K=3 |
kun raqami=6 |
|
K=4 |
kun raqami=0 |
|
K=5 |
kun raqami=1 |
|
K=365 |
kun raqami=4 |
Integer26°. Hafta kunlari: 1 — dushanba, 2 — seshanba, …, 6 — shanba, 7 — yakshanba. K (1–365) berilgan. 1-yanvar seshanba bo‘lsa, K-kunining raqamini toping.
|
Kirish |
Chiqish |
|
K=1 |
kun raqami=2 |
|
K=2 |
kun raqami=3 |
|
K=7 |
kun raqami=1 |
|
K=8 |
kun raqami=2 |
|
K=365 |
kun raqami=2 |
Integer27°. Hafta kunlari: 1 — dushanba, …, 7 — yakshanba. K (1–365) berilgan. 1-yanvar shanba (6) bo‘lsa, K-kunining raqamini toping.
|
Kirish |
Chiqish |
|
K=1 |
kun raqami=6 |
|
K=2 |
kun raqami=7 |
|
K=7 |
kun raqami=5 |
|
K=8 |
kun raqami=6 |
|
K=365 |
kun raqami=6 |
Integer28°. Hafta kunlari: 1 — dushanba, …, 7 — yakshanba. K (1–365) va N (1–7) berilgan. 1-yanvar N-raqamli hafta kuni bo‘lsa, K-kunining raqamini toping.
|
Kirish |
Chiqish |
|
K=1, N=1 |
kun raqami=1 |
|
K=1, N=7 |
kun raqami=7 |
|
K=2, N=3 |
kun raqami=4 |
|
K=8, N=5 |
kun raqami=5 |
|
K=365, N=4 |
kun raqami=4 |
Integer29°. A × B o‘lchamli to‘g‘ri to‘rtburchakda tomoni C bo‘lgan kvadratlar maksimal miqdorda joylashtiriladi (ustma-ustsiz). Joylashgan kvadratlar soni va band qilinmagan qism yuzasini toping.
|
Kirish |
Soni |
Bo‘sh yuzasi |
|
A=10, B=7, C=3 |
kvadratlar soni=6 |
bo‘sh yuzasi=16 |
|
A=25, B=12, C=4 |
kvadratlar soni=18 |
bo‘sh yuzasi=12 |
|
A=100, B=90, C=9 |
kvadratlar soni=110 |
bo‘sh yuzasi=90 |
|
A=47, B=31, C=5 |
kvadratlar soni=54 |
bo‘sh yuzasi=107 |
|
A=58, B=37, C=7 |
kvadratlar soni=40 |
bo‘sh yuzasi=186 |
Integer30°. Berilgan yil raqamiga (musbat butun son) mos asr raqamini aniqlang. Masalan, 20-asr 1901 yildan boshlangan (formula: (yil − 1) // 100 + 1).
|
Kirish |
Chiqish |
|
yil=1 |
asr=1 |
|
yil=100 |
asr=1 |
|
yil=101 |
asr=2 |
|
yil=1900 |
asr=19 |
|
yil=1901 |
asr=20 |
Begin
BEGIN GURUHI TOPSHIRIQLARI (1–40)
Eslatma: foiz, daraja, π (pi) va boshqa formulalar asl ko‘rinishda qoldirilgan. Kerakli joylarda π = 3.14 ishlatiladi.
- Kvadratning a tomoni berilgan. Uning perimetrini toping: P = 4 * a.
|
Kirish |
Chiqish |
|
a = 1.2 |
P = 4.8 |
|
a = 8.5 |
P = 34 |
|
a = 3.5 |
P = 14 |
|
a = 9.8 |
P = 39.2 |
|
a = 0.7 |
P = 2.8 |
- Kvadratning a tomoni berilgan. Uning yuzasini toping: S = a^2.
|
Kirish |
Chiqish |
|
a = 1.2 |
S = 1.44 |
|
a = 2.5 |
S = 6.25 |
|
a = 3.1 |
S = 9.61 |
|
a = 4 |
S = 16 |
|
a = 0.75 |
S = 0.5625 |
- To‘g‘ri to‘rtburchakning a va b tomonlari berilgan. Yuzasi S = a * b va perimetri P = 2 * (a + b) ni toping.
|
Kirish |
S |
P |
|
a=2, b=3.5 |
S=7 |
P=11 |
|
a=4.2, b=5 |
S=21 |
P=18.4 |
|
a=1.5, b=6.3 |
S=9.45 |
P=15.6 |
|
a=7, b=2.25 |
S=15.75 |
P=18.5 |
|
a=3, b=3 |
S=9 |
P=12 |
- Aylananing diametri d berilgan. Uzunligini toping: L = π * d (π = 3.14).
|
Kirish |
L |
|
d=1.2 |
L=3.768 |
|
d=3 |
L=9.42 |
|
d=4.5 |
L=14.13 |
|
d=10 |
L=31.4 |
|
d=0.8 |
L=2.512 |
- Kubning qirrasi a berilgan. Hajmi V = a^3 va to‘la sirt yuzasi S = 6 * a^2 ni toping.
|
Kirish |
V |
S |
|
a=1.2 |
V=1.728 |
S=8.64 |
|
a=2 |
V=8 |
S=24 |
|
a=3.5 |
V=42.875 |
S=73.5 |
|
a=0.9 |
V=0.729 |
S=4.86 |
|
a=4 |
V=64 |
S=96 |
- To‘g‘ri to‘rtburchakli parallelepipedning a, b, c qirralari berilgan. Hajmi V = a * b * c va sirt yuzasi S = 2 * (a * b + b * c + a * c) ni toping.
|
Kirish |
V |
S |
|
a=1, b=2, c=3 |
V=6 |
S=22 |
|
a=2.5, b=1.2, c=0.8 |
V=2.4 |
S=11.92 |
|
a=3, b=3, c=3 |
V=27 |
S=54 |
|
a=4, b=2, c=1.5 |
V=12 |
S=34 |
|
a=1.1, b=2.2, c=3.3 |
V=7.986 |
S=26.62 |
- Radiusi R bo‘lgan aylananing uzunligi L = 2 * π * R va yuzasi S = π * R^2 ni toping (π = 3.14).
|
Kirish |
L |
S |
|
R=1 |
L=6.28 |
S=3.14 |
|
R=1.5 |
L=9.42 |
S=7.065 |
|
R=2.3 |
L=14.444 |
S=16.6106 |
|
R=4 |
L=25.12 |
S=50.24 |
|
R=0.75 |
L=4.71 |
S=1.76625 |
- Ikki son a va b berilgan. Ularning arifmetik o‘rtachasini toping: (a + b) / 2.
|
Kirish |
Natija |
|
a=1, b=3 |
o‘rtacha=2 |
|
a=2.5, b=4.5 |
o‘rtacha=3.5 |
|
a=10, b=6 |
o‘rtacha=8 |
|
a=1.2, b=1.8 |
o‘rtacha=1.5 |
|
a=0, b=5 |
o‘rtacha=2.5 |
- Ikkita manfiy bo‘lmagan son a va b berilgan. Ularning geometrik o‘rtachasini toping: √(a * b).
|
Kirish |
Natija |
|
a=1, b=4 |
geometrik o‘rtacha=2 |
|
a=2.25, b=4 |
geometrik o‘rtacha=3 |
|
a=0, b=9 |
geometrik o‘rtacha=0 |
|
a=3.6, b=2.5 |
geometrik o‘rtacha=3 |
|
a=10, b=2 |
geometrik o‘rtacha=4.47214 |
- Ikkita nolga teng bo‘lmagan son a va b berilgan. Ularning kvadratlari yig‘indisi, ayirmasi, ko‘paytmasi va nisbatini toping.
|
Kirish |
a^2+b^2 |
a^2−b^2 |
(a^2)*(b^2) |
(a^2)/(b^2) |
|
a=2, b=3 |
a^2+b^2=13 |
a^2−b^2=-5 |
(a^2)*(b^2)=36 |
(a^2)/(b^2)=0.444444 |
|
a=-1.5, b=2 |
a^2+b^2=6.25 |
a^2−b^2=-1.75 |
(a^2)*(b^2)=9 |
(a^2)/(b^2)=0.5625 |
|
a=0.5, b=-0.25 |
a^2+b^2=0.3125 |
a^2−b^2=0.1875 |
(a^2)*(b^2)=0.015625 |
(a^2)/(b^2)=4 |
|
a=4, b=-3.2 |
a^2+b^2=26.24 |
a^2−b^2=5.76 |
(a^2)*(b^2)=163.84 |
(a^2)/(b^2)=1.5625 |
|
a=1.2, b=0.8 |
a^2+b^2=2.08 |
a^2−b^2=0.8 |
(a^2)*(b^2)=0.9216 |
(a^2)/(b^2)=2.25 |
- Ikkita nolga teng bo‘lmagan son berilgan. Ularning modullari yig‘indisi, ayirmasi, ko‘paytmasi va nisbatini toping.
|
Kirish |
|a|+|b| |
|a|−|b| |
|a|·|b| |
|a|/|b| |
|
a=-2, b=3 |
|a|+|b|=5 |
|a|−|b|=-1 |
|a|·|b|=6 |
|a|/|b|=0.666667 |
|
a=-1.5, b=-2 |
|a|+|b|=3.5 |
|a|−|b|=-0.5 |
|a|·|b|=3 |
|a|/|b|=0.75 |
|
a=0.5, b=-0.25 |
|a|+|b|=0.75 |
|a|−|b|=0.25 |
|a|·|b|=0.125 |
|a|/|b|=2 |
|
a=4, b=-3.2 |
|a|+|b|=7.2 |
|a|−|b|=0.8 |
|a|·|b|=12.8 |
|a|/|b|=1.25 |
|
a=1.2, b=0.8 |
|a|+|b|=2 |
|a|−|b|=0.4 |
|a|·|b|=0.96 |
|a|/|b|=1.5 |
- To‘g‘ri burchakli uchburchakning katetlari a va b berilgan. Gipotenuzasi c = √(a^2 + b^2) va perimetri P = a + b + c ni toping.
|
Kirish |
c |
P |
|
a=3, b=4 |
c=5 |
P=12 |
|
a=5, b=12 |
c=13 |
P=30 |
|
a=1.5, b=2 |
c=2.5 |
P=6 |
|
a=6, b=8 |
c=10 |
P=24 |
|
a=2.5, b=2 |
c=3.20156 |
P=7.70156 |
- Umumiy markazli ikkita aylana radiuslari R1 va R2 (R1 > R2) berilgan. S1 = π*R1^2, S2 = π*R2^2 va halqa yuzasi S3 = S1 − S2 ni toping (π = 3.14).
|
Kirish |
S1 |
S2 |
S3 |
|
R1=5, R2=3 |
S1=78.5 |
S2=28.26 |
S3=50.24 |
|
R1=2.5, R2=1.2 |
S1=19.625 |
S2=4.5216 |
S3=15.1034 |
|
R1=4, R2=1 |
S1=50.24 |
S2=3.14 |
S3=47.1 |
|
R1=3, R2=2.5 |
S1=28.26 |
S2=19.625 |
S3=8.635 |
|
R1=1.5, R2=1 |
S1=7.065 |
S2=3.14 |
S3=3.925 |
- Aylana uzunligi L berilgan. Uning radiusi R va doira yuzasi S ni toping (L = 2 * π * R, S = π * R^2, π = 3.14).
|
Kirish |
R |
S |
|
L=6.28 |
R=1 |
S=3.14 |
|
L=31.4 |
R=5 |
S=78.5 |
|
L=12.56 |
R=2 |
S=12.56 |
|
L=9.42 |
R=1.5 |
S=7.065 |
|
L=50.24 |
R=8 |
S=200.96 |
- Doira yuzasi S berilgan. Diametri D va aylana uzunligi L ni toping (L = π * D, S = π * D^2 / 4, π = 3.14).
|
Kirish |
D |
L |
|
S=3.14 |
D=2 |
L=6.28 |
|
S=12.56 |
D=4 |
L=12.56 |
|
S=50.24 |
D=8 |
L=25.12 |
|
S=7.065 |
D=3 |
L=9.42 |
|
S=28.26 |
D=6 |
L=18.84 |
- Sonlar o‘qida x1 va x2 nuqtalar berilgan. Ularning orasidagi masofa: |x2 − x1|.
|
Kirish |
Masofa |
|
x1=1, x2=5 |
|x2−x1|=4 |
|
x1=-2, x2=3 |
|x2−x1|=5 |
|
x1=0, x2=0.75 |
|x2−x1|=0.75 |
|
x1=10, x2=3.5 |
|x2−x1|=6.5 |
|
x1=-1.2, x2=-3.7 |
|x2−x1|=2.5 |
- Sonlar o‘qida A, B, C nuqtalar berilgan. AC va BC kesmalar uzunliklari hamda ularning yig‘indisini toping.
|
Kirish |
AC |
BC |
AC+BC |
|
A=0, B=5, C=2 |
AC=2 |
BC=3 |
AC+BC=5 |
|
A=-3, B=4, C=1 |
AC=4 |
BC=3 |
AC+BC=7 |
|
A=1.5, B=3.5, C=2.2 |
AC=0.7 |
BC=1.3 |
AC+BC=2 |
|
A=10, B=2, C=6 |
AC=4 |
BC=4 |
AC+BC=8 |
|
A=-2, B=-5, C=-3 |
AC=1 |
BC=2 |
AC+BC=3 |
- Sonlar o‘qida A, B, C nuqtalar berilgan, C — A va B orasida. AC va BC uzunliklari ko‘paytmasini toping.
|
Kirish |
AC·BC |
|
A=0, B=5, C=2 |
AC·BC=6 |
|
A=1, B=6, C=4 |
AC·BC=6 |
|
A=-3, B=2, C=-1 |
AC·BC=6 |
|
A=2.5, B=5.5, C=3 |
AC·BC=1.25 |
|
A=-5, B=-1, C=-3 |
AC·BC=4 |
- To‘g‘ri to‘rtburchakning qarama-qarshi uchlari (x1, y1), (x2, y2). Tomonlari o‘qlarga parallel. Perimetri va yuzasini toping.
|
Kirish |
P |
S |
|
(0,0), (3,4) |
P=14 |
S=12 |
|
(1,2), (4,6) |
P=14 |
S=12 |
|
(-2,-1), (2,3) |
P=16 |
S=16 |
|
(5,5), (8,9) |
P=14 |
S=12 |
|
(-1.5,2.5), (1.5,4) |
P=9 |
S=4.5 |
- Tekislikdagi ikki nuqta (x1, y1) va (x2, y2) orasidagi masofa: √((x2 − x1)^2 + (y2 − y1)^2).
|
Kirish |
Masofa |
|
(0,0), (3,4) |
Masofa=5 |
|
(1,2), (4,6) |
Masofa=5 |
|
(-2,-1), (2,3) |
Masofa=5.65685 |
|
(5,5), (8,9) |
Masofa=5 |
|
(-1.5,2.5), (1.5,4) |
Masofa=3.3541 |
- Uchburchak uchlari: (x1, y1), (x2, y2), (x3, y3). Perimetri va yuzasini toping (Heron formulasi: S = √(p (p − a)(p − b)(p − c)), p = (a + b + c) / 2).
|
Kirish |
P |
S |
|
(0,0), (3,0), (0,4) |
P=12 |
S=6 |
|
(1,1), (4,1), (1,5) |
P=12 |
S=6 |
|
(-1,0), (2,0), (0,3) |
P=9.76783 |
S=4.5 |
|
(2,2), (5,2), (2,6) |
P=12 |
S=6 |
|
(-2,-1), (1,-1), (-2,2) |
P=10.2426 |
S=4.5 |
- O‘zgaruvchilar A va B qiymatlarini joyini almashtiring va yangi A, B ni chiqaring.
|
Kirish |
Chiqish (A’) |
Chiqish (B’) |
|
A=1, B=2 |
Yangi A=2 |
Yangi B=1 |
|
A=3.5, B=-1 |
Yangi A=-1 |
Yangi B=3.5 |
|
A=0, B=7 |
Yangi A=7 |
Yangi B=0 |
|
A=10, B=10.5 |
Yangi A=10.5 |
Yangi B=10 |
|
A=-2.2, B=4.4 |
Yangi A=4.4 |
Yangi B=-2.2 |
- A, B, C o‘zgaruvchilar berilgan. Qiymatlarni aylantiring: A → B, B → C, C → A; so‘ng yangilarini chiqaring.
|
Kirish |
A’ |
B’ |
C’ |
|
A=1, B=2, C=3 |
A’=2 |
B’=3 |
C’=1 |
|
A=3.5, B=-1, C=0 |
A’=-1 |
B’=0 |
C’=3.5 |
|
A=0, B=7, C=2.5 |
A’=7 |
B’=2.5 |
C’=0 |
|
A=10, B=10.5, C=11 |
A’=10.5 |
B’=11 |
C’=10 |
|
A=-2.2, B=4.4, C=8.8 |
A’=4.4 |
B’=8.8 |
C’=-2.2 |
- A, B, C o‘zgaruvchilar berilgan. Qiymatlarni aylantiring: A → C, C → B, B → A; so‘ng yangilarini chiqaring.
|
Kirish |
A’ |
B’ |
C’ |
|
A=1, B=2, C=3 |
A’=3 |
B’=1 |
C’=2 |
|
A=3.5, B=-1, C=0 |
A’=0 |
B’=3.5 |
C’=-1 |
|
A=0, B=7, C=2.5 |
A’=2.5 |
B’=0 |
C’=7 |
|
A=10, B=10.5, C=11 |
A’=11 |
B’=10 |
C’=10.5 |
|
A=-2.2, B=4.4, C=8.8 |
A’=8.8 |
B’=-2.2 |
C’=4.4 |
- x berilganda y = 3 * x^6 − 6 * x^2 − 7 funksiyaning qiymatini toping.
|
Kirish |
y |
|
x=-2 |
y=161 |
|
x=-1 |
y=-10 |
|
x=0 |
y=-7 |
|
x=1 |
y=-10 |
|
x=2 |
y=161 |
- x berilganda y = 4 * (x − 3)^6 − 7 * (x − 3)^3 + 2 funksiyaning qiymatini toping.
|
Kirish |
y |
|
x=0 |
y=3107 |
|
x=1 |
y=314 |
|
x=3 |
y=2 |
|
x=4 |
y=-1 |
|
x=6 |
y=2729 |
- A soni berilgan. A^8 ni uchta ko‘paytirish orqali hisoblang (A^2 → A^4 → A^8). Topilgan barcha darajalarni chiqaring.
|
Kirish |
A^2 |
A^4 |
A^8 |
|
A=0.5 |
A^2=0.25 |
A^4=0.0625 |
A^8=0.00390625 |
|
A=1.2 |
A^2=1.44 |
A^4=2.0736 |
A^8=4.29982 |
|
A=-2 |
A^2=4 |
A^4=16 |
A^8=256 |
|
A=3 |
A^2=9 |
A^4=81 |
A^8=6561 |
|
A=-1.5 |
A^2=2.25 |
A^4=5.0625 |
A^8=25.6289 |
- A soni berilgan. A^15 ni besh ko‘paytirish orqali hisoblang (A^2, A^3, A^5, A^10, A^15). Barcha darajalarni chiqaring.
|
Kirish |
A^2 |
A^3 |
A^5 |
A^10 |
A^15 |
|
A=0.5 |
A^2=0.25 |
A^3=0.125 |
A^5=0.03125 |
A^10=0.000976562 |
A^15=3.05176e-05 |
|
A=1.2 |
A^2=1.44 |
A^3=1.728 |
A^5=2.48832 |
A^10=6.19174 |
A^15=15.407 |
|
A=-2 |
A^2=4 |
A^3=-8 |
A^5=-32 |
A^10=1024 |
A^15=-32768 |
|
A=3 |
A^2=9 |
A^3=27 |
A^5=243 |
A^10=59049 |
A^15=14348907 |
|
A=-1.5 |
A^2=2.25 |
A^3=-3.375 |
A^5=-7.59375 |
A^10=57.665 |
A^15=-437.894 |
- Burchak qiymati α gradusda (0 < α < 360). Uni radianlarga o‘tkazing; 180° = π radian (π = 3.14).
|
Kirish |
Natija |
|
α=30° |
radian=0.523333 |
|
α=45° |
radian=0.785 |
|
α=60° |
radian=1.04667 |
|
α=90° |
radian=1.57 |
|
α=180° |
radian=3.14 |
- Burchak qiymati α radianlarda (0 < α < 2π). Uni graduslarga o‘tkazing; 180° = π radian (π = 3.14).
|
Kirish |
Natija |
|
α=0.52 rad |
gradus=29.8089° |
|
α=1.57 rad |
gradus=90° |
|
α=2.09 rad |
gradus=119.809° |
|
α=3.14 rad |
gradus=180° |
|
α=5 rad |
gradus=286.624° |
- Harorat T (Fahrenheit) berilgan. Celsiusga o‘tkazing: T_C = (T_F − 32) * 5 / 9.
|
Kirish |
T_C |
|
T_F=32 |
T_C=0 |
|
T_F=68 |
T_C=20 |
|
T_F=77 |
T_C=25 |
|
T_F=104 |
T_C=40 |
|
T_F=14 |
T_C=-10 |
- Harorat T (Celsius) berilgan. Fahrenheitga o‘tkazing: T_F = T_C * 9/5 + 32.
|
Kirish |
T_F |
|
T_C=0 |
T_F=32 |
|
T_C=20 |
T_F=68 |
|
T_C=25 |
T_F=77 |
|
T_C=40 |
T_F=104 |
|
T_C=-10 |
T_F=14 |
- X kg konfet A so‘m turadi. 1 kg va Y kgning narxini toping.
|
Kirish |
1 kg narxi |
Y kg narxi |
|
X=2 kg, A=30000 so‘m, Y=1.5 kg |
1 kg narxi=15000 |
Y kg narxi=22500 |
|
X=0.8 kg, A=12000 so‘m, Y=0.5 kg |
1 kg narxi=15000 |
Y kg narxi=7500 |
|
X=1.2 kg, A=18000 so‘m, Y=3 kg |
1 kg narxi=15000 |
Y kg narxi=45000 |
|
X=5 kg, A=75000 so‘m, Y=2 kg |
1 kg narxi=15000 |
Y kg narxi=30000 |
|
X=3.5 kg, A=49000 so‘m, Y=1.2 kg |
1 kg narxi=14000 |
Y kg narxi=16800 |
- X kg shokolad A so‘m, Y kg iris B so‘m. 1 kg shokolad, 1 kg iris narxlari va shokoladning irisdan necha marta qimmatroqligini toping.
|
Kirish |
1kg shokolad |
1kg iris |
Shokolad/Iris |
|
X=2, A=50000, Y=1, B=20000 |
1kg shokolad=25000 |
1kg iris=20000 |
nisbat=1.25 |
|
X=1.5, A=37500, Y=0.5, B=6000 |
1kg shokolad=25000 |
1kg iris=12000 |
nisbat=2.08333 |
|
X=3, A=120000, Y=2, B=50000 |
1kg shokolad=40000 |
1kg iris=25000 |
nisbat=1.6 |
|
X=0.8, A=24000, Y=1.2, B=18000 |
1kg shokolad=30000 |
1kg iris=15000 |
nisbat=2 |
|
X=5, A=200000, Y=4, B=120000 |
1kg shokolad=40000 |
1kg iris=30000 |
nisbat=1.33333 |
- Qayiqning sokin suvdagi tezligi V, daryo oqim tezligi U (U < V). Qayiq ko‘lda T1 soat, daryoda (oqimga qarshi) T2 soat yurgan. S = V*T1 + (V − U)*T2.
|
Kirish |
S |
|
V=10, U=2, T1=1, T2=2 |
S=26 |
|
V=12, U=3, T1=0.5, T2=1.5 |
S=19.5 |
|
V=8, U=1, T1=2, T2=0.5 |
S=19.5 |
|
V=15, U=5, T1=1.2, T2=0.8 |
S=26 |
|
V=9, U=2, T1=3, T2=1 |
S=34 |
- Ikki avtomobil tezliklari V1 va V2, ular orasidagi masofa S. Ular T soatdan so‘ng uzoqlashsa: masofa = S + T*(V1 + V2).
|
Kirish |
Masofa (T dan keyin) |
|
V1=40, V2=60, S0=100, T=1 |
S=200 |
|
V1=50, V2=70, S0=10, T=2 |
S=250 |
|
V1=30, V2=80, S0=0, T=1.5 |
S=165 |
|
V1=90, V2=90, S0=20, T=0.5 |
S=110 |
|
V1=60, V2=40, S0=200, T=3 |
S=500 |
- Ikki avtomobil dastlab bir-biriga qarshi harakatlansa: T soatdan keyingi masofa = |S − T*(V1 + V2)|.
|
Kirish |
Masofa (T dan keyin) |
|
V1=40, V2=60, S0=100, T=1 |
Masofa=0 |
|
V1=50, V2=70, S0=200, T=2 |
Masofa=40 |
|
V1=30, V2=80, S0=50, T=1.5 |
Masofa=115 |
|
V1=90, V2=90, S0=20, T=0.5 |
Masofa=70 |
|
V1=60, V2=40, S0=70, T=3 |
Masofa=230 |
- Chiziqli tenglama A * x + B = 0 (A ≠ 0). Yechim: x = −B / A.
|
Kirish |
x |
|
A=2, B=4 |
x=-2 |
|
A=-1, B=3 |
x=3 |
|
A=0.5, B=-2 |
x=4 |
|
A=10, B=0 |
x=0 |
|
A=-2.5, B=5 |
x=2 |
- Kvadrat tenglama A * x^2 + B * x + C = 0 (A ≠ 0), diskriminant ijobiy. Avval kichik, so‘ng katta ildizni chiqaring.
|
Kirish |
x1 (kichik) |
x2 (katta) |
|
A=1, B=-3, C=2 |
x1=1 |
x2=2 |
|
A=2, B=-7, C=3 |
x1=0.5 |
x2=3 |
|
A=1, B=0, C=-4 |
x1=-2 |
x2=2 |
|
A=3, B=-6, C=-9 |
x1=-1 |
x2=3 |
|
A=2, B=-5, C=-3 |
x1=-0.5 |
x2=3 |
- Tizimni yeching (yagona yechim mavjud): A1*x + B1*y = C1; A2*x + B2*y = C2. Formulalar: x = (C1*B2 − C2*B1)/D, y = (A1*C2 − A2*C1)/D, D = A1*B2 − A2*B1.
|
Kirish |
x |
y |
|
A1=1, B1=2, C1=5, A2=3, B2=4, C2=11 |
x=1 |
y=2 |
|
A1=2, B1=1, C1=7, A2=-1, B2=3, C2=4 |
x=2.42857 |
y=2.14286 |
|
A1=3, B1=-2, C1=1, A2=5, B2=1, C2=12 |
x=1.92308 |
y=2.38462 |
|
A1=4, B1=5, C1=9, A2=2, B2=-3, C2=1 |
x=1.45455 |
y=0.636364 |
|
A1=1.5, B1=-0.5, C1=2, A2=0.5, B2=1, C2=1.5 |
x=1.57143 |
y=0.714286 |
Boolean
BOOLEAN GURUHI TOPSHIRIQLARI (1–20)
Eslatma: Ushbu guruhda natija Boolean turida (True/False). Masalalarda boshqa ko‘rsatilmagan bo‘lsa, kirish qiymatlari butun sonlar. Mantiqiy bog‘lovchilar: AND (va), OR (yoki), NOT (inkor), XOR (eksklyuziv yoki).
Boolean1°. Butun son A berilgan. Shartning rostligini aniqlang: A > 0.
|
Kirish |
Natija (True/False) |
|
A=-5 |
False |
|
A=0 |
False |
|
A=3 |
True |
|
A=10 |
True |
|
A=-1 |
False |
Boolean2°. Butun son A berilgan. Shartning rostligini aniqlang: A toq (A mod 2 ≠ 0).
|
Kirish |
Natija |
|
A=-4 |
False |
|
A=-3 |
True |
|
A=0 |
False |
|
A=7 |
True |
|
A=12 |
False |
Boolean3°. Butun son A berilgan. Shartning rostligini aniqlang: A juft (A mod 2 = 0).
|
Kirish |
Natija |
|
A=-4 |
True |
|
A=-3 |
False |
|
A=0 |
True |
|
A=7 |
False |
|
A=12 |
True |
Boolean4°. Butun sonlar A va B berilgan. Shartning rostligini aniqlang: (A > 2) AND (B ≤ 3).
|
Kirish |
Natija |
|
A=3, B=3 |
True |
|
A=2, B=3 |
False |
|
A=5, B=1 |
True |
|
A=1, B=10 |
False |
|
A=10, B=4 |
False |
Boolean5°. Butun sonlar A va B berilgan. Shartning rostligini aniqlang: (A ≥ 0) OR (B < −2).
|
Kirish |
Natija |
|
A=0, B=-3 |
True |
|
A=-1, B=-3 |
True |
|
A=-1, B=0 |
False |
|
A=5, B=5 |
True |
|
A=-2, B=-1 |
False |
Boolean6°. Butun sonlar A va B berilgan. Shartning rostligini aniqlang: A va B ikkalasi ham toq.
|
Kirish |
Natija |
|
A=1, B=3 |
True |
|
A=2, B=3 |
False |
|
A=5, B=7 |
True |
|
A=8, B=10 |
False |
|
A=-3, B=-5 |
True |
Boolean7°. Butun sonlar A va B berilgan. Shartning rostligini aniqlang: A yoki B dan hech bo‘lmaganda bittasi toq.
|
Kirish |
Natija |
|
A=2, B=4 |
False |
|
A=2, B=5 |
True |
|
A=7, B=8 |
True |
|
A=9, B=11 |
True |
|
A=0, B=0 |
False |
Boolean8°. Butun sonlar A va B berilgan. Shartning rostligini aniqlang: A va B dan faqat bittasi toq (XOR).
|
Kirish |
Natija |
|
A=2, B=4 |
False |
|
A=2, B=5 |
True |
|
A=7, B=8 |
True |
|
A=9, B=11 |
False |
|
A=0, B=1 |
True |
Boolean9°. Butun sonlar A va B berilgan. Shartning rostligini aniqlang: A va B bir xil juftlikka ega.
|
Kirish |
Natija |
|
A=2, B=4 |
True |
|
A=2, B=5 |
False |
|
A=7, B=9 |
True |
|
A=0, B=1 |
False |
|
A=-3, B=5 |
True |
Boolean10°. Butun sonlar A va B berilgan. Shartning rostligini aniqlang: (A > 0) AND (B > 0).
|
Kirish |
Natija |
|
A=1, B=1 |
True |
|
A=1, B=0 |
False |
|
A=0, B=5 |
False |
|
A=10, B=-1 |
False |
|
A=-2, B=-3 |
False |
Boolean11°. Butun sonlar A, B, C berilgan. Shartning rostligini aniqlang: A > 0, B > 0 va C > 0.
|
Kirish |
Natija |
|
A=1, B=2, C=3 |
True |
|
A=1, B=0, C=3 |
False |
|
A=0, B=0, C=1 |
False |
|
A=5, B=6, C=-1 |
False |
|
A=-1, B=-2, C=-3 |
False |
Boolean12°. Butun sonlar A, B, C berilgan. Shartning rostligini aniqlang: A, B, C ichida faqat BIRTA musbat.
|
Kirish |
Natija |
|
A=1, B=-2, C=-3 |
True |
|
A=1, B=2, C=-3 |
False |
|
A=-1, B=-2, C=3 |
True |
|
A=0, B=0, C=1 |
True |
|
A=-5, B=-6, C=-7 |
False |
Boolean13°. Butun sonlar A, B, C berilgan. Shartning rostligini aniqlang: A, B, C ichida faqat IKKITA musbat.
|
Kirish |
Natija |
|
A=1, B=-2, C=3 |
True |
|
A=1, B=2, C=-3 |
True |
|
A=-1, B=2, C=3 |
True |
|
A=0, B=1, C=1 |
True |
|
A=5, B=6, C=7 |
False |
Boolean14°. Butun sonlar A, B, C berilgan. Shartning rostligini aniqlang: A, B, C o‘zaro har xil (juftlari teng emas).
|
Kirish |
Natija |
|
A=1, B=2, C=3 |
True |
|
A=1, B=1, C=2 |
False |
|
A=0, B=0, C=0 |
False |
|
A=5, B=-5, C=5 |
False |
|
A=-1, B=2, C=-1 |
False |
Boolean15°. Butun sonlar A, B, C berilgan. Shartning rostligini aniqlang: A < B < C (kuchli o‘sish).
|
Kirish |
Natija |
|
A=1, B=2, C=3 |
True |
|
A=1, B=1, C=2 |
False |
|
A=3, B=2, C=1 |
False |
|
A=0, B=5, C=5 |
False |
|
A=-2, B=-1, C=0 |
True |
Boolean16°. Butun sonlar A, B, C berilgan. Shartning rostligini aniqlang: A < B < C YOKI A > B > C.
|
Kirish |
Natija |
|
A=1, B=2, C=3 |
True |
|
A=3, B=2, C=1 |
True |
|
A=1, B=1, C=2 |
False |
|
A=2, B=2, C=2 |
False |
|
A=-3, B=-2, C=-1 |
True |
Boolean17°. Butun son A berilgan. Shartning rostligini aniqlang: A — ikki xonali va juft.
|
Kirish |
Natija |
|
A=10 |
True |
|
A=11 |
False |
|
A=99 |
False |
|
A=100 |
False |
|
A=-12 |
True |
Boolean18°. Butun son A berilgan. Shartning rostligini aniqlang: A — uch xonali va toq.
|
Kirish |
Natija |
|
A=100 |
False |
|
A=101 |
True |
|
A=999 |
True |
|
A=-345 |
True |
|
A=99 |
False |
Boolean19°. Butun sonlar A va B berilgan (B ≠ 0). Shartning rostligini aniqlang: A soni B ga karrali (A mod B = 0).
|
Kirish |
Natija |
|
A=10, B=5 |
True |
|
A=10, B=3 |
False |
|
A=0, B=7 |
True |
|
A=-12, B=4 |
True |
|
A=15, B=-5 |
True |
Boolean20°. Butun son A berilgan. Shartning rostligini aniqlang: A soni 3 ga va 5 ga karrali (A mod 3 = 0 va A mod 5 = 0).
|
Kirish |
Natija |
|
A=0 |
True |
|
A=15 |
True |
|
A=30 |
True |
|
A=45 |
True |
|
A=14 |
False |
IF
IF guruhi — shart operatori
Har bir topshiriq uchun 5 ta kirish–chiqish misoli va qisqa izoh berildi.
If-1. Butun son berilgan. Agar u musbat bo‘lsa, uni 1 ga oshiring, aks holda o‘zgartirmang.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
n = 5 |
chiqish: 6 |
musbat → +1 |
|
n = 0 |
chiqish: 0 |
nol → o‘zgarmaydi |
|
n = -3 |
chiqish: -3 |
manfiy → o‘zgarmaydi |
|
n = 12 |
chiqish: 13 |
musbat → +1 |
|
n = -1 |
chiqish: -1 |
manfiy → o‘zgarmaydi |
If-2. Butun son berilgan. Agar u musbat bo‘lsa, 1 ga oshiring, aks holda 2 ga kamaytiring.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
n = 7 |
chiqish: 8 |
musbat → +1 |
|
n = -2 |
chiqish: -4 |
manfiy → −2 |
|
n = 0 |
chiqish: -2 |
nol → −2 |
|
n = 1 |
chiqish: 2 |
musbat → +1 |
|
n = -10 |
chiqish: -12 |
manfiy → −2 |
If-3. Butun son berilgan. Agar u musbat bo‘lsa, 1 ga oshiring, manfiy bo’lsa 2 ga kamaytiring, nol bo’lsa 10 chiqaring.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
n = 3 |
chiqish: 4 |
musbat → +1 |
|
n = -4 |
chiqish: -6 |
manfiy → −2 |
|
n = 0 |
chiqish: 10 |
nol → 10 |
|
n = 9 |
chiqish: 10 |
musbat → +1 |
|
n = -1 |
chiqish: -3 |
manfiy → −2 |
If-4. Uchta butun son berilgan. Musbat sonlar sonini toping.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
a=1, b=2, c=3 |
musbatlar: 3 |
+,+,+ → 3 ta |
|
a=1, b=-2, c=0 |
musbatlar: 1 |
+,−,0 → 1 ta |
|
a=-1, b=-2, c=-3 |
musbatlar: 0 |
−,−,− → 0 ta |
|
a=5, b=7, c=-3 |
musbatlar: 2 |
+,+,− → 2 ta |
|
a=0, b=0, c=1 |
musbatlar: 1 |
0,0,+ → 1 ta |
If-5. Uchta butun son berilgan: musbatlar va manfiylar sonini aniqlang.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
a=1, b=2, c=3 |
musbat=3, manfiy=0 |
barchasi + |
|
a=1, b=-2, c=0 |
musbat=1, manfiy=1 |
+ va − bor, 0 hisoblanmaydi |
|
a=-1, b=-2, c=-3 |
musbat=0, manfiy=3 |
barchasi − |
|
a=5, b=7, c=-3 |
musbat=2, manfiy=1 |
2+,1− |
|
a=0, b=0, c=1 |
musbat=1, manfiy=0 |
faqat 1 + |
If-6. Ikki butun son berilgan. Kattasini chiqaring.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
a=3, b=7 |
natija: 7 |
7 > 3 |
|
a=10, b=2 |
natija: 10 |
10 > 2 |
|
a=-5, b=-1 |
natija: -1 |
-1 > -5 |
|
a=4, b=4 |
natija: 4 |
teng → istalganini chiqaring |
|
a=0, b=9 |
natija: 9 |
9 > 0 |
If-7. Ikkita butun son berilgan. Kattasining tartib raqamini chiqaring (1 yoki 2); teng bo‘lsa, 0.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
a=3, b=7 |
natija: 2 |
b katta |
|
a=10, b=2 |
natija: 1 |
a katta |
|
a=-5, b=-1 |
natija: 2 |
b katta |
|
a=4, b=4 |
natija: 0 |
teng |
|
a=0, b=9 |
natija: 2 |
b katta |
If-8. Ikkita butun son berilgan. Sonlarni kamayish tartibida chiqaring.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
a=3, b=7 |
7, 3 |
katta → oldin |
|
a=10, b=2 |
10, 2 |
katta → oldin |
|
a=-5, b=-1 |
-1, -5 |
katta (−1) → oldin |
|
a=4, b=4 |
4, 4 |
teng |
|
a=0, b=9 |
9, 0 |
katta → oldin |
If-9. A va B sonlar berilgan. Sonlarni shunday almashtiringki, A da kichik, B da katta son chiqsin.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
A=7, B=3 |
A=3, B=7 |
tartiblandi |
|
A=2, B=10 |
A=2, B=10 |
allaqachon tartibda |
|
A=-1, B=-5 |
A=-5, B=-1 |
tartiblandi |
|
A=4, B=4 |
A=4, B=4 |
teng |
|
A=0, B=9 |
A=0, B=9 |
tartibda |
If-10. A va B sonlar berilgan. A ≠ B bo‘lsa ularning yig’indisini (A=B=A+B) aks holda A=B=0 chiqaring.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
A=3, B=7 |
A=B=10 |
teng emas → yig‘indi |
|
A=10, B=2 |
A=B=12 |
teng emas → yig‘indi |
|
A=4, B=4 |
A=B=0 |
teng → nollar |
|
A=-1, B=5 |
A=B=4 |
teng emas → yig‘indi |
|
A=0, B=0 |
A=B=0 |
teng → nollar |
If-11. A va B sonlar berilgan. A ≠ B bo‘lsa, A=B=max(A,B); aks holda A=B=0.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
A=3, B=7 |
A=B=7 |
katta 7 |
|
A=10, B=2 |
A=B=10 |
katta 10 |
|
A=4, B=4 |
A=B=0 |
teng |
|
A=-1, B=5 |
A=B=5 |
katta 5 |
|
A=0, B=9 |
A=B=9 |
katta 9 |
If-12. Uchta son berilgan. Eng kichigini chiqaring.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
a=3, b=7, c=5 |
natija: 3 |
min=3 |
|
a=10, b=2, c=8 |
natija: 2 |
min=2 |
|
a=-5, b=-1, c=-7 |
natija: -7 |
min=−7 |
|
a=4, b=4, c=9 |
natija: 4 |
min=4 |
|
a=0, b=9, c=1 |
natija: 0 |
min=0 |
If-13. Uchta son berilgan. O‘rtanchasini chiqaring.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
a=3, b=7, c=5 |
o‘rtacha: 5 |
3 < 5 < 7 |
|
a=10, b=2, c=8 |
o‘rtacha: 8 |
2 < 8 < 10 |
|
a=-5, b=-1, c=-7 |
o‘rtacha: -5 |
−7 < −5 < −1 |
|
a=4, b=4, c=9 |
o‘rtacha: 4 |
tenglardan biri |
|
a=0, b=9, c=1 |
o‘rtacha: 1 |
0 < 1 < 9 |
If-14. Uchta son berilgan. Eng kichigi va eng kattasini chiqaring.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
a=3, b=7, c=5 |
min=3, max=7 |
tartib: 3 ≤ 5 ≤ 7 |
|
a=10, b=2, c=8 |
min=2, max=10 |
tartib: 2 ≤ 8 ≤ 10 |
|
a=-5, b=-1, c=-7 |
min=−7, max=−1 |
tartib: −7 ≤ −5 ≤ −1 |
|
a=4, b=4, c=9 |
min=4, max=9 |
teng holat bor |
|
a=0, b=9, c=1 |
min=0, max=9 |
tartib: 0 ≤ 1 ≤ 9 |
If-15. Uchta son berilgan. Eng katta ikki sonning yig‘indisini chiqaring.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
a=3, b=7, c=5 |
natija: 12 |
7+5 |
|
a=10, b=2, c=8 |
natija: 18 |
10+8 |
|
a=-5, b=-1, c=-7 |
natija: -6 |
−1 + (−5) |
|
a=4, b=4, c=9 |
natija: 13 |
9+4 |
|
a=0, b=9, c=1 |
natija: 10 |
9+1 |
If-16. A, B, C sonlar haqiqiy. Agar qat’iy o‘sish bo‘lsa (A < B < C), ularni 2 baravar oshiring; aks holda ishorani teskarilang.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
A=1, B=2, C=3 |
2, 4, 6 |
o‘suvchi → ×2 |
|
A=3, B=2, C=1 |
-3, -2, -1 |
o‘suvchi emas → − |
|
A=1, B=1, C=2 |
-1, -1, -2 |
qat’iy emas → − |
|
A=-2, B=0, C=5 |
2, 0, -5 |
qat’iy emas → − |
|
A=0, B=1, C=2 |
0, 2, 4 |
o‘suvchi → ×2 |
If-17. A, B, C sonlar haqiqiy. Agar o‘suvchi yoki kamayuvchi bo‘lsa, ×2; aks holda ishora teskarilanadi.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
A=1, B=2, C=3 |
2, 4, 6 |
o‘suvchi → ×2 |
|
A=3, B=2, C=1 |
6, 4, 2 |
kamayuvchi → ×2 |
|
A=1, B=1, C=2 |
-1, -1, -2 |
monoton emas → − |
|
A=-2, B=0, C=5 |
2, 0, -5 |
monoton emas → − |
|
A=0, B=1, C=0 |
0, -1, 0 |
monoton emas → − |
If-18. Uchta butundan bittasi boshqacha, qolgan ikkitasi teng. Boshqachaning tartib raqamini toping.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
a=5, b=5, c=2 |
javob: 3 |
c farqli |
|
a=7, b=3, c=7 |
javob: 2 |
b farqli |
|
a=9, b=4, c=4 |
javob: 1 |
a farqli |
|
a=1, b=1, c=1 |
javob: aniqlanmaydi |
barchasi teng |
|
a=2, b=3, c=2 |
javob: 2 |
b farqli |
If-19. To‘rtta butundan bittasi boshqacha, uchtasi teng. Boshqachaning tartib raqamini toping.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
a=5, b=5, c=5, d=2 |
javob: 4 |
d farqli |
|
a=7, b=3, c=3, d=3 |
javob: 1 |
a farqli |
|
a=9, b=4, c=9, d=9 |
javob: 2 |
b farqli |
|
a=1, b=1, c=1, d=1 |
javob: aniqlanmaydi |
barchasi teng |
|
a=2, b=2, c=3, d=2 |
javob: 3 |
c farqli |
If-20. A nuqtaga yaqinroq bo‘lgan nuqta (B yoki C) va masofasini toping.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
A=0, B=2, C=5 |
yaqin: B, masofa=2 |
|2−0|=2 < |5−0|=5 |
|
A=10, B=7, C=14 |
yaqin: B, masofa=3 |
|7−10|=3 < |14−10|=4 |
|
A=5, B=1, C=3 |
yaqin: C, masofa=2 |
|1−5|=4 > |3−5|=2 |
|
A=-3, B=-1, C=-6 |
yaqin: B, masofa=2 |
2 < 3 |
|
A=8, B=8, C=9 |
yaqin: B, masofa=0 |
B aynan A ga teng |
If-21. Nuqta (x,y). (0,0) bo‘lsa 0; OX o‘qida (y=0, x≠0) bo‘lsa 1; OY o‘qida (x=0, y≠0) bo‘lsa 2; aks holda 3.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
(0,0) |
0 |
boshlanish nuqtasi |
|
(0,5) |
2 |
OY o‘qi |
|
(7,0) |
1 |
OX o‘qi |
|
(3,4) |
3 |
choraklardan biri |
|
(-2,-1) |
3 |
choraklardan biri |
If-22. Nuqta (x,y) (o‘qlarda yotmaydi). Qaysi chorakda: 1,2,3,4.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
(3,4) |
1 |
x>0, y>0 |
|
(-3,4) |
2 |
x<0, y>0 |
|
(-2,-1) |
3 |
x<0, y<0 |
|
(5,-7) |
4 |
x>0, y<0 |
|
(0,1) |
ta’rifga mos emas |
o‘qda yotadi |
If-23. To‘g‘ri to‘rtburchakning 3 cho‘qqisi berilgan (o‘qlarga parallel). 4-cho‘qqini toping.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
(0,0), (0,5), (7,0) |
(7,5) |
x va y lar juftligini to‘ldirish |
|
(1,1), (1,4), (6,1) |
(6,4) |
x=1 yoki 6, y=1 yoki 4 |
|
(-2,3), (4,3), (-2,-1) |
(4,-1) |
mos juftliklar |
|
(2,2), (2,8), (9,8) |
(9,2) |
mos juftliklar |
|
(0,5), (7,5), (7,0) |
(0,0) |
mos juftliklar |
If-24. f(x) = 2·sin(x), agar x>0; aks holda f(x) = 6−x.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
x=1.0 |
≈ 1.6829 |
2·sin(1.0) |
|
x=-2.0 |
8 |
6−(−2) |
|
x=0 |
6 |
6−0 |
|
x=3.14 |
≈ 0.0 |
2·sin(π) ≈ 0 |
|
x=0.5 |
≈ 0.9589 |
2·sin(0.5) |
If-25. |x|>2 → f=2·x, aks holda f=−3·x.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
x=3 |
6 |
|x|>2 |
|
x=-5 |
-10 |
|x|>2 |
|
x=2 |
-6 |
aks holda |
|
x=0 |
0 |
aks holda |
|
x=-2 |
-6 |
aks holda |
If-26. f(x)=−x, agar x≤0; x^2, agar 0<x<2; 4, agar x≥2.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
x=-3 |
3 |
x≤0 |
|
x=0 |
0 |
x≤0 |
|
x=1.5 |
2.25 |
0<x<2 |
|
x=2 |
4 |
x≥2 |
|
x=3.2 |
4 |
x≥2 |
If-27. x<0 → f=0; x≥0 da floor(x) juft bo‘lsa f=1, aks holda f=−1.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
x=-1.2 |
0 |
x<0 |
|
x=0.0 |
1 |
floor(0)=0 juft |
|
x=1.9 |
-1 |
floor(1)=1 toq |
|
x=2.0 |
1 |
floor(2)=2 juft |
|
x=7.3 |
-1 |
floor(7)=7 toq |
If-28. Kabisa yili bu 4 yilda bir marta keladigan yildir. Kabisa yilida Fevral oyi 29 kun bo’ladi. Ushbu yilni topish uchun quyidagi holatga e’tibor berish kerak. Kabisa yili 4 ga bo’linadigan son bo’lishi kerak. Lekin istisno holati bor — ushbu yil 100 ga bo’linadi, lekin 400 ga bo’linmaydi. Masalan, 300, 1300, 900-yillar kabisa yili emas, lekin 1200 va 2000 lar kabisa yilidir. Agar kabisa yili bo’lsa 366 chiqaring, aks holda 365 chiqaring. (yil%4==0 va yil%100!=0) yoki (yil%400==0). Kabisa → 366, aks holda 365.
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
2020 |
366 |
4 ga bo‘linadi, 100 ga emas |
|
1900 |
365 |
100 ga bo‘linadi, 400 ga emas |
|
2000 |
366 |
400 ga bo‘linadi |
|
2021 |
365 |
kabisa emas |
|
2400 |
366 |
400 ga bo‘linadi |
If-29. Bitta n soni berilgan. n ni ta’riflang: «manfiy/0/musbat» + «juft/toq».
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
n=-4 |
manfiy juft |
n<0, n%2==0 |
|
n=0 |
nol |
alohida holat |
|
n=7 |
musbat toq |
n>0, n%2!=0 |
|
n=12 |
musbat juft |
n>0, n%2==0 |
|
n=-5 |
manfiy toq |
n<0, n%2!=0 |
If-30. 1–999 oralig‘idagi n sonini quyidagicha ajrating: «juft/toq» + «bir/ikki/uch xonali son».
Misollar:
|
Qiymat(lar) |
Natija |
Izoh |
|
n=7 |
toq bir xonali |
7 (1 xonali), toq |
|
n=24 |
juft ikki xonali |
24 (2 xonali), juft |
|
n=135 |
toq uch xonali |
135 (3 xonali), toq |
|
n=80 |
juft ikki xonali |
80 (2 xonali), juft |
|
n=999 |
toq uch xonali |
999 (3 xonali), toq |
FOR
For1. Butun K va N soni berilgan (N>0) berilgan. K sonini N marta chiqaring.
| № | K | N | Natija (chiqariladigan qiymatlar) |
| 1 | 5 | 3 | 5 5 5 |
| 2 | -2 | 4 | -2 -2 -2 -2 |
| 3 | 7 | 1 | 7 |
| 4 | 0 | 5 | 0 0 0 0 0 |
| 5 | 9 | 2 | 9 9 |
For2. Butun A va B sonlari (A<B) berilgan. A dan B gacha (A va B ham) barcha butun sonlarni o‘sish tartibida, hamda ularning soni N ni chiqaring.
| № | A | B | Chiqarilgan sonlar | N (soni) |
| 1 | 2 | 5 | 2 3 4 5 | 4 |
| 2 | -1 | 2 | -1 0 1 2 | 4 |
| 3 | 3 | 3 | 3 | 1 |
| 4 | 0 | 4 | 0 1 2 3 4 | 5 |
| 5 | 7 | 9 | 7 8 9 | 3 |
For3. Butun A va B soni berilgan(A<B). A va B orasidagi (A va B ni hisobga olmasdan) barcha butun sonlarni kamayish tartibida, hamda ularning soni N ni chiqaring.
| № | A | B | Chiqarilgan sonlar | N (soni) |
| 1 | 2 | 6 | 5 4 3 | 3 |
| 2 | -1 | 3 | 2 1 0 | 3 |
| 3 | 4 | 5 | (yo‘q) | 0 |
| 4 | 1 | 7 | 6 5 4 3 2 | 5 |
| 5 | 0 | 10 | 9 8 7 6 5 4 3 2 1 | 9 |
For4. 1 kg konfet narxi (haqiqiy) berilgan. 1, 2, …, 10 kg uchun narxlarni chiqaring.
| № | 1 kg narxi | Kg (1–10) | Narxlar (kg × narx) |
| 1 | 10.0 | 1–10 | 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0 |
| 2 | 12.5 | 1–10 | 12.5, 25.0, 37.5, 50.0, 62.5, 75.0, 87.5, 100.0, 112.5, 125.0 |
| 3 | 7.2 | 1–10 | 7.2, 14.4, 21.6, 28.8, 36.0, 43.2, 50.4, 57.6, 64.8, 72.0 |
| 4 | 4.5 | 1–10 | 4.5, 9.0, 13.5, 18.0, 22.5, 27.0, 31.5, 36.0, 40.5, 45.0 |
| 5 | 9.8 | 1–10 | 9.8, 19.6, 29.4, 39.2, 49.0, 58.8, 68.6, 78.4, 88.2, 98.0 |
For5. 1 kg konfet narxi (haqiqiy) berilgan. 0.1, 0.2, …, 1.0 kg uchun narxlarni chiqaring.
| № | 1 kg narxi | Kg qiymatlar | Narxlar (kg × narx) |
| 1 | 10.0 | 0.1–1.0 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 |
| 2 | 12.5 | 0.1–1.0 | 1.25, 2.5, 3.75, 5.0, 6.25, 7.5, 8.75, 10.0, 11.25, 12.5 |
| 3 | 8.4 | 0.1–1.0 | 0.84, 1.68, 2.52, 3.36, 4.20, 5.04, 5.88, 6.72, 7.56, 8.40 |
| 4 | 5.0 | 0.1–1.0 | 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 |
| 5 | 9.6 | 0.1–1.0 | 0.96, 1.92, 2.88, 3.84, 4.80, 5.76, 6.72, 7.68, 8.64, 9.60 |
For6. 1 kg konfet narxi (haqiqiy) berilgan. 1.2, 1.4, …, 2.0 kg uchun narxlarni chiqaring.
| № | 1 kg narxi | Kg qiymatlar | Narxlar (kg × narx) |
| 1 | 10.0 | 1.2–2.0 (0.2 qadam) | 12.0, 14.0, 16.0, 18.0, 20.0 |
| 2 | 8.0 | 1.2–2.0 | 9.6, 11.2, 12.8, 14.4, 16.0 |
| 3 | 6.5 | 1.2–2.0 | 7.8, 9.1, 10.4, 11.7, 13.0 |
| 4 | 12.5 | 1.2–2.0 | 15.0, 17.5, 20.0, 22.5, 25.0 |
| 5 | 9.2 | 1.2–2.0 | 11.04, 12.88, 14.72, 16.56, 18.40 |
For7. Butun A va B soni berilgan (A<B). A dan B gacha butun sonlar yig‘indisini topish.
| № | A | B | Chiqarilgan sonlar | Yig‘indi |
| 1 | 1 | 5 | 1+2+3+4+5 | 15 |
| 2 | 3 | 6 | 3+4+5+6 | 18 |
| 3 | -2 | 2 | -2+(-1)+0+1+2 | 0 |
| 4 | 5 | 9 | 5+6+7+8+9 | 35 |
| 5 | 10 | 13 | 10+11+12+13 | 46 |
For8. Butun A va B soni berilgan (A<B). A dan B gacha butun sonlar ko‘paytmasini toping.
| № | A | B | Chiqarilgan sonlar | Ko‘paytma |
| 1 | 1 | 4 | 1·2·3·4 | 24 |
| 2 | 2 | 5 | 2·3·4·5 | 120 |
| 3 | 3 | 6 | 3·4·5·6 | 360 |
| 4 | -2 | 2 | (-2)·(-1)·0·1·2 | 0 |
| 5 | 5 | 7 | 5·6·7 | 210 |
For9. Butun A va B soni berilgan (A<B). A dan B gacha butun sonlar kvadratlari yig‘indisini toping.
| № | A | B | Sonlar | Yig‘indi |
| 1 | 1 | 3 | 1²+2²+3² | 14 |
| 2 | 2 | 4 | 2²+3²+4² | 29 |
| 3 | -2 | 2 | (-2)²+(-1)²+0²+1²+2² | 10 |
| 4 | 3 | 6 | 3²+4²+5²+6² | 86 |
| 5 | 5 | 8 | 5²+6²+7²+8² | 174 |
For10. Butun N soni berilgan (N>0). S = 1 + 1/2 + 1/3 + … + 1/N yig‘indini toping (haqiqiy).
| № | N | Hisoblash | Natija (S) |
| 1 | 1 | 1 | 1.0 |
| 2 | 2 | 1 + 1/2 | 1.5 |
| 3 | 3 | 1 + 1/2 + 1/3 | 1.8333 |
| 4 | 5 | 1 + 1/2 + 1/3 + 1/4 + 1/5 | 2.2833 |
| 5 | 10 | 1 + 1/2 + … + 1/10 | 2.9289 |
For11. Butun N soni berilgan (N>0). S = N² + (N+1)² + … + (2·N)² yig‘indini toping (butun).
| № | N | Hisoblash | Natija (S) |
| 1 | 1 | 1² + 2² | 5 |
| 2 | 2 | 2² + 3² + 4² | 29 |
| 3 | 3 | 3² + 4² + 5² + 6² | 86 |
| 4 | 4 | 4² + 5² + 6² + 7² + 8² | 190 |
| 5 | 5 | 5² + 6² + 7² + 8² + 9² + 10² | 355 |
For12. Butun N soni berilgan (N>0). P = 1.1 × 1.2 × 1.3 × … (N ta ko‘paytuvchi) ni toping (haqiqiy).
| № | N | Hisoblash | Natija (P) taxminan |
| 1 | 1 | 1.1 | 1.1 |
| 2 | 2 | 1.1 × 1.2 | 1.32 |
| 3 | 3 | 1.1 × 1.2 × 1.3 | 1.716 |
| 4 | 4 | 1.1 × 1.2 × 1.3 × 1.4 | 2.402 |
| 5 | 5 | 1.1 × 1.2 × 1.3 × 1.4 × 1.5 | 3.603 |
For13. Butun N soni berilgan (N>0). S = 1.1 − 1.2 + 1.3 − … (N ta qo‘shiluvchi, ishoralar almashadi) ni toping.
(if ishlatmasdan)
| № | N | Hisoblash | Natija (S) |
| 1 | 1 | 1.1 | 1.1 |
| 2 | 2 | 1.1 − 1.2 | -0.1 |
| 3 | 3 | 1.1 − 1.2 + 1.3 | 1.2 |
| 4 | 4 | 1.1 − 1.2 + 1.3 − 1.4 | -0.2 |
| 5 | 5 | 1.1 − 1.2 + 1.3 − 1.4 + 1.5 | 1.3 |
For14. Butun N soni berilgan (N>0). Formuladan foyd. N² = 1 + 3 + 5 + … + (2·N−1).
Har qo‘shilgandan so‘ng joriy yig‘indini chiqaring (1 dan N gacha kvadratlar chiqadi).
| № | N | Qo‘shiluvchilar va oraliq yig‘indilar | Natija (chiqarilgan kvadratlar) |
| 1 | 1 | 1 | 1 |
| 2 | 2 | 1 → 4 | 1, 4 |
| 3 | 3 | 1 → 4 → 9 | 1, 4, 9 |
| 4 | 4 | 1 → 4 → 9 → 16 | 1, 4, 9, 16 |
| 5 | 5 | 1 → 4 → 9 → 16 → 25 | 1, 4, 9, 16, 25 |
For15. Haqiqiy A va butun N soni berilgan (>0). Aⁿ ni topish (A ni N marta ko‘paytiring).
| № | A | N | Hisoblash | Natija |
| 1 | 2.0 | 3 | 2×2×2 | 8.0 |
| 2 | 3.0 | 4 | 3×3×3×3 | 81.0 |
| 3 | 1.5 | 5 | 1.5⁵ | 7.59375 |
| 4 | -2.0 | 3 | (-2)³ | -8.0 |
| 5 | 0.5 | 4 | 0.5⁴ | 0.0625 |
For16. Haqiqiy A va butun N soni berilgan (>0). A ning barcha butun darajalarini 1 dan N gacha tartibda chiqaring.
| № | A | N | Chiqarilgan qiymatlar (A¹, A², …, Aⁿ) |
| 1 | 2.0 | 4 | 2.0, 4.0, 8.0, 16.0 |
| 2 | 3.0 | 3 | 3.0, 9.0, 27.0 |
| 3 | 1.5 | 5 | 1.5, 2.25, 3.375, 5.0625, 7.59375 |
| 4 | -2.0 | 4 | -2.0, 4.0, -8.0, 16.0 |
| 5 | 0.5 | 6 | 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625 |
For17. Haqiqiy A va butun N soni berilgan (>0). S = 1 + A + A² + … + Aⁿ yig‘indini chiqaring.
| № | A | N | Hisoblash | Natija (S) |
| 1 | 2.0 | 3 | 1 + 2 + 4 + 8 | 15.0 |
| 2 | 1.0 | 4 | 1 + 1 + 1 + 1 + 1 | 5.0 |
| 3 | 0.5 | 3 | 1 + 0.5 + 0.25 + 0.125 | 1.875 |
| 4 | -1.0 | 4 | 1 — 1 + 1 — 1 + 1 | 1.0 |
| 5 | 3.0 | 2 | 1 + 3 + 9 | 13.0 |
For18. Haqiqiy A va butun N soni berilgan (>0). S = 1 − A + A² − A³ + … + (−1)ⁿ·Aⁿ ni chiqaring. (if ishlatmasdan).
| № | A | N | Hisoblash | Natija (S) |
| 1 | 2.0 | 3 | 1 − 2 + 4 − 8 | -5 |
| 2 | 1.0 | 4 | 1 − 1 + 1 − 1 + 1 | 1 |
| 3 | 0.5 | 3 | 1 − 0.5 + 0.25 − 0.125 | 0.625 |
| 4 | -1.0 | 3 | 1 + 1 + 1 + 1 | 4 |
| 5 | 3.0 | 2 | 1 − 3 + 9 | 7 |
For19. Butun N soni berilgan (>0). N! = 1×2×…×N ko‘paytmani (faktorial) haqiqiy turda hisoblab chiqaring.
| № | N | Hisoblash | Natija (N!) |
| 1 | 1 | 1 | 1 |
| 2 | 3 | 1×2×3 | 6 |
| 3 | 5 | 1×2×3×4×5 | 120 |
| 4 | 6 | 1×2×3×4×5×6 | 720 |
| 5 | 8 | 1×2×3×4×5×6×7×8 | 40320 |
For20. Butun N soni berilgan (>0). S = 1! + 2! + … + N! yig‘indisini (faktoriallar yig‘indisi) haqiqiy turda hisoblang.
| № | N | Hisoblash | Natija (S) |
| 1 | 1 | 1! | 1 |
| 2 | 2 | 1! + 2! | 3 |
| 3 | 3 | 1! + 2! + 3! | 9 |
| 4 | 4 | 1! + 2! + 3! + 4! | 33 |
| 5 | 5 | 1! + 2! + 3! + 4! + 5! | 153 |
For21. Butun N soni berilgan (>0). S = 1 + 1/1! + 1/2! + … + 1/N! yig‘indini toping. (e ≈ exp(1) yaqinlashuvi).
| № | N | Hisoblash | Natija (S, taxminan) |
| 1 | 1 | 1 + 1/1 | 2.0 |
| 2 | 2 | 1 + 1/1! + 1/2! | 2.5 |
| 3 | 3 | 1 + 1 + 1/2 + 1/6 | 2.6667 |
| 4 | 5 | 1 + 1 + 1/2 + 1/6 + 1/24 + 1/120 | 2.7167 |
| 5 | 10 | 1 + 1 + 1/2 + … + 1/10! | 2.71828 |
For22. Haqiqiy X va butun N soni berilgan (>0). S = 1 + X + X²/2! + … + Xⁿ/N! (exp(X) yaqinlashuvi).
| № | X | N | Hisoblash (asosiy hadlar) | Natija (S, taxminan) |
| 1 | 1 | 3 | 1 + 1 + 1/2 + 1/6 | 2.6667 |
| 2 | 1 | 5 | 1 + 1 + 1/2 + 1/6 + 1/24 + 1/120 | 2.7167 |
| 3 | 2 | 4 | 1 + 2 + 2 + 1.3333 + 0.6667 | 7.0 |
| 4 | -1 | 4 | 1 — 1 + 0.5 — 0.1667 + 0.0417 | 0.375 |
| 5 | 0.5 | 5 | 1 + 0.5 + 0.125 + 0.0208 + 0.0026 + 0.00026 | 1.6484 |
For23. Haqiqiy X va butun N soni berilgan (>0). S = X − X³/3! + X⁵/5! − … + (−1)ⁿ·X^(2N+1)/(2N+1)! (sin(X) yaqinlashuvi).
| № | X | N | Hisoblash (asosiy hadlar) | Natija (S, taxminan) |
| 1 | 1 | 2 | 1 − 1³/6 + 1⁵/120 | 0.8417 |
| 2 | 0.5 | 3 | 0.5 − 0.5³/6 + 0.5⁵/120 − 0.5⁷/5040 | 0.4794 |
| 3 | 1.57 | 3 | 1.57 − (1.57³)/6 + (1.57⁵)/120 − (1.57⁷)/5040 | ≈ 1.0000 |
| 4 | -1 | 2 | -1 + 1³/6 — 1⁵/120 | -0.8417 |
| 5 | 0 | 2 | 0 | 0 |
For24. Haqiqiy X va butun N soni berilgan (>0). S = 1 − X²/2! + X⁴/4! − … + (−1)ⁿ·X^(2N)/(2N)! (cos(X) yaqinlashuvi).
| № | X | N | Hisoblash (asosiy hadlar) | Natija (S, taxminan) |
| 1 | 1 | 2 | 1 − 1²/2 + 1⁴/24 | 0.5417 |
| 2 | 0.5 | 3 | 1 − 0.25/2 + 0.0625/24 | 0.8776 |
| 3 | 1.57 | 3 | 1 − 1.57²/2 + 1.57⁴/24 − 1.57⁶/720 | ≈ 0.0008 |
| 4 | 0 | 2 | 1 | 1 |
| 5 | -1 | 3 | 1 − (-1)²/2 + (-1)⁴/24 − (-1)⁶/720 | 0.5403 |
For25. Haqiqiy X (|X|<1) va butun N soni berilgan (>0). S = X − X²/2 + X³/3 − … + (−1)ⁿ⁻¹·Xⁿ/N (ln(1+X) yaqinlashuvi).
| № | X | N | Hisoblash (asosiy hadlar) | Natija (S, taxminan) |
| 1 | 0.5 | 3 | 0.5 − 0.25/2 + 0.125/3 | 0.4167 |
| 2 | 0.2 | 5 | 0.2 − 0.04/2 + 0.008/3 − 0.0016/4 + 0.00032/5 | 0.1823 |
| 3 | -0.5 | 3 | -0.5 − (-0.5)²/2 + (-0.5)³/3 | -0.405 |
| 4 | 0.8 | 4 | 0.8 − 0.64/2 + 0.512/3 − 0.4096/4 | 0.543 |
| 5 | -0.3 | 4 | -0.3 − 0.09/2 + 0.027/3 − 0.0081/4 | -0.3567 |
For26. Haqiqiy X (|X|<1) va butun N soni berilgan (>0).
S = X − X³/3 + X⁵/5 − … + (−1)ᴺ·X^(2N+1)/(2N+1) (arctg(X) yaqinlashuvi).
| № | X | N | Hisoblash (asosiy hadlar) | Natija (S, taxminan) |
| 1 | 0.5 | 2 | 0.5 − 0.125/3 + 0.03125/5 | 0.4636 |
| 2 | -0.5 | 3 | -0.5 + 0.125/3 − 0.03125/5 + 0.0078125/7 | -0.4636 |
| 3 | 0.8 | 3 | 0.8 − 0.512/3 + 0.32768/5 − 0.2097152/7 | 0.6747 |
| 4 | -0.3 | 4 | -0.3 + 0.027/3 − 0.00243/5 + 0.0002187/7 − 0.00001968/9 | -0.2915 |
| 5 | 0.2 | 4 | 0.2 − 0.008/3 + 0.00032/5 − 0.0000128/7 + 0.000000512/9 | 0.1974 |
For27. Haqiqiy X (|X|<1) va butun N soni berilgan (>0).
S = X + 1·X³/(2·3) + 1·3·X⁵/(2·4·5) + … + 1·3·…·(2N−1)·X^(2N+1)/(2·4·…·(2N)·(2N+1)) (arcsin(X) yaqinlashuvi).
| № | X | N | Hisoblash (asosiy hadlar) | Natija (S, taxminan) |
| 1 | 0.5 | 2 | 0.5 + 0.5³/6 + 3·0.5⁵/120 | 0.5236 |
| 2 | 0.3 | 3 | 0.3 + 0.027/6 + 3·0.00243/120 + 15·0.0002187/5040 | 0.3047 |
| 3 | 0.8 | 3 | 0.8 + 0.512/6 + 3·0.32768/120 + 15·0.2097152/5040 | 0.9273 |
| 4 | -0.5 | 2 | -0.5 − 0.125/6 − 3·0.03125/120 | -0.5236 |
| 5 | -0.2 | 3 | -0.2 − 0.008/6 − 3·0.00032/120 − 15·0.0000128/5040 | -0.2014 |
For28. Haqiqiy X (|X|<1) va butun N soni berilgan (>0).
S = 1 + X/2 − 1·X²/(2·4) + 1·3·X³/(2·4·6) − … + (−1)ᴺ⁻¹·1·3·…·(2N−3)·Xᴺ/(2·4·…·(2N)) ((1+X)^{1/2} yaqinlashuvi).
| № | X | N | Hisoblash (asosiy hadlar) | Natija (S, taxminan) |
| 1 | 0.5 | 3 | 1 + 0.25 − 0.25²/8 + 0.75·0.125/48 | 1.2247 |
| 2 | 0.2 | 4 | 1 + 0.1 − 0.04/8 + 0.06·0.008/48 − 0.15·0.0016/384 | 1.0954 |
| 3 | -0.5 | 3 | 1 − 0.25 − 0.25²/8 − 0.75·0.125/48 | 0.7071 |
| 4 | -0.3 | 4 | 1 − 0.15 − 0.09/8 − 0.27·0.027/48 − 0.405·0.0081/384 | 0.8367 |
| 5 | 0.8 | 3 | 1 + 0.4 − 0.64/8 + 0.96·0.512/48 | 1.3416 |
For29. Butun N (>1) va haqiqiy A, B soni berilgan (A<B).
[A,B] kesma N teng qismga bo‘lingan. H uzunlikni va A, A+H, …, B nuqtalar to‘plamini chiqaring.
| № | A | B | N | H | Nuqtalar (A, A+H, …, B) |
| 1 | 0 | 10 | 5 | 2.0 | 0, 2, 4, 6, 8, 10 |
| 2 | 2 | 6 | 4 | 1.0 | 2, 3, 4, 5, 6 |
| 3 | -2 | 2 | 2 | 2.0 | -2, 0, 2 |
| 4 | 5 | 15 | 5 | 2.0 | 5, 7, 9, 11, 13, 15 |
| 5 | 1 | 2 | 10 | 0.1 | 1.0, 1.1, 1.2, …, 2.0 |
For30. Butun N (>1) va haqiqiy A, B soni berilgan (A<B).
[A,B] kesma N teng bo‘lingan. H va F(X)=1−sin(X) qiymatlarini A, A+H, …, B nuqtalarda chiqaring.
| № | A | B | N | H | F(X)=1−sin(X) qiymatlar |
| 1 | 0 | π/2 | 2 | π/4 ≈ 0.7854 | F(0)=1.0, F(π/4)=1−0.7071=0.2929, F(π/2)=1−1=0 |
| 2 | 0 | π | 4 | π/4 ≈ 0.7854 | 1.0, 0.2929, 0, 0.2929, 1.0 |
| 3 | 0 | 2 | 4 | 0.5 | F(0)=1.0, F(0.5)=0.5211, F(1)=0.1585, F(1.5)=0.0031, F(2)=0.0907 |
| 4 | 1 | 2 | 5 | 0.2 | F(1)=0.1585, F(1.2)=0.0671, F(1.4)=0.0134, F(1.6)=0.0023, F(1.8)=0.0299, F(2)=0.0907 |
| 5 | -π/2 | π/2 | 2 | π/2 ≈ 1.5708 | F(-π/2)=1−(−1)=2, F(0)=1, F(π/2)=0 |
For31. Butun N soni berilgan (>0).
Ketma-ketlik: A₀=2; Aₖ=2+1/Aₖ₋₁. A₁, A₂, …, Aₙ elementlarini chiqaring.
| № | N | Hisoblash bosqichlari | Natijalar (A₁…Aₙ) |
| 1 | 1 | A₁=2+1/2=2.5 | 2.5 |
| 2 | 2 | A₁=2.5, A₂=2+1/2.5=2.4 | 2.5, 2.4 |
| 3 | 3 | A₁=2.5, A₂=2.4, A₃=2+1/2.4=2.4167 | 2.5, 2.4, 2.4167 |
| 4 | 4 | davom ettiriladi… | 2.5, 2.4, 2.4167, 2.4132 |
| 5 | 5 | 2.5, 2.4, 2.4167, 2.4132, 2.4138 |
For32. Butun N soni berilgan (>0).
Ketma-ketlik: A₀=1; Aₖ=(Aₖ₋₁+1)/k. A₁, A₂, …, Aₙ elementlarini chiqaring.
| № | N | Hisoblash bosqichlari | Natijalar (A₁…Aₙ) |
| 1 | 1 | A₁=(1+1)/1=2 | 2 |
| 2 | 2 | A₁=2, A₂=(2+1)/2=1.5 | 2, 1.5 |
| 3 | 3 | A₂=1.5, A₃=(1.5+1)/3=0.8333 | 2, 1.5, 0.8333 |
| 4 | 4 | A₃=0.8333, A₄=(0.8333+1)/4=0.4583 | 2, 1.5, 0.8333, 0.4583 |
| 5 | 5 | A₄=0.4583, A₅=(0.4583+1)/5=0.2917 | 2, 1.5, 0.8333, 0.4583, 0.2917 |
For33. Butun N soni berilgan (>1).
Fibonachi ketma-ketligini chiqaring.: F₁=1, F₂=1, Fₖ=Fₖ₋₂+Fₖ₋₁.
| № | N | Hisoblash bosqichlari | Natijalar (F₁…Fₙ) |
| 1 | 3 | 1, 1, 2 | 1, 1, 2 |
| 2 | 5 | 1, 1, 2, 3, 5 | 1, 1, 2, 3, 5 |
| 3 | 7 | 1, 1, 2, 3, 5, 8, 13 | 1, 1, 2, 3, 5, 8, 13 |
| 4 | 9 | 1, 1, 2, 3, 5, 8, 13, 21, 34 | 1, 1, 2, 3, 5, 8, 13, 21, 34 |
| 5 | 10 | 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 | 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 |
For34. Butun N soni berilgan (>1).
Ketma-ketlik: A₁=1, A₂=2, Aₖ=(Aₖ₋₂+2·Aₖ₋₁)/3.
| № | N | Hisoblash bosqichlari | Natijalar (A₁…Aₙ) |
| 1 | 3 | (1+2·2)/3=5/3=1.667 | 1, 2, 1.667 |
| 2 | 4 | (2+2·1.667)/3=1.778 | 1, 2, 1.667, 1.778 |
| 3 | 5 | (1.667+2·1.778)/3=1.741 | 1, 2, 1.667, 1.778, 1.741 |
| 4 | 6 | (1.778+2·1.741)/3=1.753 | 1, 2, 1.667, 1.778, 1.741, 1.753 |
| 5 | 7 | (1.741+2·1.753)/3=1.749 | 1, 2, 1.667, 1.778, 1.741, 1.753, 1.749 |
For35. Butun N soni berilgan (>2).
Ketma-ketlik: A₁=1, A₂=2, A₃=3, Aₖ=Aₖ₋₁+Aₖ₋₂−2·Aₖ₋₃.
| № | N | Hisoblash bosqichlari | Natijalar (A₁…Aₙ) |
| 1 | 4 | 3+2−2·1=3 | 1, 2, 3, 3 |
| 2 | 5 | 3+3−2·2=2 | 1, 2, 3, 3, 2 |
| 3 | 6 | 2+3−2·3=−1 | 1, 2, 3, 3, 2, −1 |
| 4 | 7 | −1+2−2·3=−5 | 1, 2, 3, 3, 2, −1, −5 |
| 5 | 8 | −5+(−1)−2·2=−10 | 1, 2, 3, 3, 2, −1, −5, −10 |
For36. Butun musbat N va K berilgan. S = 1^K + 2^K + … + N^K (haqiqiy turda).
| № | N | K | Natija S |
| 1 | 3 | 2 | 1²+2²+3²=14 |
| 2 | 4 | 3 | 1³+2³+3³+4³=100 |
| 3 | 5 | 1 | 1+2+3+4+5=15 |
| 4 | 2 | 5 | 1⁵+2⁵=33 |
| 5 | 6 | 2 | 1²+2²+…+6²=91 |
For37. Butun N soni berilgan (>0). S = 1^1 + 2^2 + … + N^N (haqiqiy turda).
| № | N | Natija S |
| 1 | 3 | 1¹+2²+3³=1+4+27=32 |
| 2 | 4 | 1+4+27+256=288 |
| 3 | 5 | 1+4+27+256+3125=3413 |
| 4 | 2 | 1+4=5 |
| 5 | 6 | 1+4+27+256+3125+46656=50069 |
For38. Butun N soni berilgan (>0). S = 1^N + 2^{N−1} + … + N^1 (haqiqiy turda).
| № | N | Natija S |
| 1 | 3 | 1³+2²+3¹=1+4+3=8 |
| 2 | 4 | 1⁴+2³+3²+4¹=1+8+9+4=22 |
| 3 | 5 | 1⁵+2⁴+3³+4²+5¹=1+16+27+16+5=65 |
| 4 | 2 | 1²+2¹=1+2=3 |
| 5 | 6 | 1⁶+2⁵+3⁴+4³+5²+6¹=1+32+81+64+25+6=209 |
For39. Butun musbat A va B soni berilgan (A<B). A dan B gacha har bir sonni o‘z qiymaticha marta chiqaring.
| № | A | B | Natija |
| 1 | 2 | 4 | 2 2, 3 3 3, 4 4 4 4 |
| 2 | 1 | 3 | 1, 2 2, 3 3 3 |
| 3 | 3 | 5 | 3 3 3, 4 4 4 4, 5 5 5 5 5 |
| 4 | 2 | 3 | 2 2, 3 3 3 |
| 5 | 1 | 4 | 1, 2 2, 3 3 3, 4 4 4 4 |
For40. Butun A va B soni berilgan (A<B). A dan B gacha: A 1 marta, A+1 — 2 marta, …, B — (B−A+1) marta chiqarilsin.
| № | A | B | Natija |
| 1 | 1 | 4 | 1, 2 2, 3 3 3, 4 4 4 4 |
| 2 | 2 | 5 | 2, 3 3, 4 4 4, 5 5 5 5 |
| 3 | 0 | 3 | 0, 1 1, 2 2 2, 3 3 3 3 |
| 4 | 3 | 6 | 3, 4 4, 5 5 5, 6 6 6 6 |
| 5 | 1 | 5 | 1, 2 2, 3 3 3, 4 4 4 4, 5 5 5 5 5 |
WHILE
While1
Musbat A va B (A > B) berilgan. Uzunligi A bo‘lgan kesmada uzunligi B bo‘lgan maksimal sonli kesmalar (ustma-ust tushmasdan) joylashtiriladi. Ko‘paytirish va bo‘lish amallarini ishlatmasdan, A kesmaning band bo‘lmagan qismi (qoldiq uzunlik)ni toping.
|
№ |
A |
B |
Qoldiq (A mod B) |
|
1 |
10 |
3 |
1 |
|
2 |
15 |
4 |
3 |
|
3 |
22 |
5 |
2 |
|
4 |
17 |
6 |
5 |
|
5 |
25 |
7 |
4 |
While2
Musbat A va B (A > B) berilgan. Uzunligi A bo‘lgan kesmada uzunligi B bo‘lgan maksimal sonli kesmalar joylashtiriladi. Ko‘paytirish va bo‘lish amallarini ishlatmasdan, A kesmaga nechta B kesma sig‘ishini toping.
|
№ |
A |
B |
Nechta kesma sig‘adi (A div B) |
|
1 |
10 |
3 |
3 |
|
2 |
15 |
4 |
3 |
|
3 |
22 |
5 |
4 |
|
4 |
17 |
6 |
2 |
|
5 |
25 |
7 |
3 |
While3
Musbat butun N va K berilgan. Faqat qo‘shish/ayirishdan foydalanib, N ni K ga bo‘lganda butun qism va qoldiqni toping.
|
№ |
N |
K |
Butun qism |
Qoldiq |
|
1 |
10 |
3 |
3 |
1 |
|
2 |
14 |
4 |
3 |
2 |
|
3 |
21 |
5 |
4 |
1 |
|
4 |
19 |
6 |
3 |
1 |
|
5 |
25 |
8 |
3 |
1 |
While4
Musbat butun N va K berilgan (N > K). Faqat ayirishdan foydalanib, N − K − K − … jarayoni yakunlangandan keyin qolgan qiymatni (qoldiqni) va nechta ayirish bajarilganini (butun qism) alohida chiqarish.
|
№ |
N |
K |
Ayirishlar soni (butun qism) |
Qoldiq |
|
1 |
10 |
3 |
3 |
1 |
|
2 |
15 |
4 |
3 |
3 |
|
3 |
20 |
6 |
3 |
2 |
|
4 |
18 |
5 |
3 |
3 |
|
5 |
25 |
7 |
3 |
4 |
While5
Musbat butun N (> 1) berilgan. 2 ning eng katta butun darajasi 2^K ≤ N shartni qanoatlantiradigan K ni toping (multiplikativ usulda, while orqali).
|
№ |
N |
K |
2^K qiymati |
|
1 |
10 |
3 |
8 |
|
2 |
17 |
4 |
16 |
|
3 |
31 |
4 |
16 |
|
4 |
33 |
5 |
32 |
|
5 |
64 |
6 |
64 |
While6
Musbat butun N (> 1) berilgan. 2^K < N bo‘ladigan eng katta K ni toping va 2^K qiymatini ham chiqaring.
|
№ |
N |
K |
2^K |
|
1 |
10 |
3 |
8 |
|
2 |
17 |
4 |
16 |
|
3 |
33 |
5 |
32 |
|
4 |
65 |
6 |
64 |
|
5 |
130 |
6 |
64 |
While7
Musbat butun N (> 1) berilgan. 3 ning eng katta butun darajasi 3^K ≤ N shartni qanoatlantiradigan K va 3^K ni toping.
|
№ |
N |
K |
3^K |
|
1 |
10 |
2 |
9 |
|
2 |
27 |
3 |
27 |
|
3 |
28 |
3 |
27 |
|
4 |
80 |
4 |
81 (lekin 81 > 80, shuning uchun K=3, 3^3=27) |
|
5 |
100 |
4 |
81 |
While8
Musbat butun N (> 1) berilgan. 3^K < N bo‘ladigan eng katta K ni toping (K va 3^K ni chiqarish).
|
№ |
N |
K |
3^K |
|
1 |
10 |
2 |
9 |
|
2 |
27 |
2 |
9 |
|
3 |
28 |
3 |
27 |
|
4 |
82 |
3 |
27 |
|
5 |
100 |
4 |
81 |
While9
Musbat butun N (> 1) berilgan. N soni 3 ning darajasi ekan-emasligini aniqlang (ha/yo‘q).
|
№ |
N |
Natija |
|
1 |
9 |
ha |
|
2 |
27 |
ha |
|
3 |
10 |
yo‘q |
|
4 |
81 |
ha |
|
5 |
100 |
yo‘q |
While10
Butun N (> 1) berilgan. 3^K < N bo‘ladigan eng katta butun K ni toping.
|
№ |
N |
K |
|
1 |
10 |
2 |
|
2 |
28 |
3 |
|
3 |
82 |
3 |
|
4 |
100 |
4 |
|
5 |
250 |
5 |
While11
Musbat haqiqiy eps (> 0) va butun N berilgan. Geometrik progressiya yig‘indisini
S = 1 + 1/3 + 1/3² + … hisoblang; had qiymati eps dan kichik bo‘lganda siklni to‘xtating; nechta had qo‘shilganini chiqaring.
|
№ |
eps |
Yig‘indi (S) |
Hadlar soni |
|
1 |
0.1 |
1.48148 |
4 |
|
2 |
0.01 |
1.49985 |
6 |
|
3 |
0.001 |
1.49999 |
9 |
|
4 |
0.0001 |
1.5 |
12 |
|
5 |
0.00001 |
1.5 |
15 |
While12
Musbat haqiqiy A (> 1) va eps (> 0) berilgan.
1 + 1/A + 1/A² + … yig‘indisini had qiymati eps dan kichik bo‘lguncha hisoblang; yig‘indi va hadlar sonini chiqaring.
|
№ |
A |
eps |
Yig‘indi (S) |
Hadlar soni |
|
1 |
2 |
0.1 |
1.875 |
4 |
|
2 |
2 |
0.01 |
1.999 |
7 |
|
3 |
3 |
0.01 |
1.497 |
5 |
|
4 |
5 |
0.001 |
1.25 |
6 |
|
5 |
10 |
0.0001 |
1.1111 |
5 |
While13
Musbat butun N berilgan. N sonining raqamlari yig‘indisi va raqamlar sonini while yordamida toping.
|
№ |
N |
Raqamlar yig‘indisi |
Raqamlar soni |
|
1 |
1234 |
10 |
4 |
|
2 |
505 |
10 |
3 |
|
3 |
6789 |
30 |
4 |
|
4 |
9001 |
10 |
4 |
|
5 |
11111 |
5 |
5 |
While14
Musbat butun N berilgan. N sonining raqamlari ko‘paytmasini toping (0 raqam uchrasa, natija 0).
|
№ |
N |
Raqamlar ko‘paytmasi |
|
1 |
123 |
6 |
|
2 |
405 |
0 |
|
3 |
56 |
30 |
|
4 |
999 |
729 |
|
5 |
101 |
0 |
While15
Musbat butun N berilgan. N sonining raqamlarini teskari tartibda yozib hosil bo‘lgan sonni chiqaring.
|
№ |
N |
Teskari son |
|
1 |
1234 |
4321 |
|
2 |
560 |
65 |
|
3 |
7001 |
1007 |
|
4 |
9999 |
9999 |
|
5 |
1050 |
501 |
While16
Musbat butun N va raqam R (0..9) berilgan. N yozuvida R raqami uchrash-uchramasligini aniqlang.
|
№ |
N |
R |
Natija |
|
1 |
12345 |
3 |
ha |
|
2 |
67890 |
4 |
yo‘q |
|
3 |
9001 |
0 |
ha |
|
4 |
55555 |
5 |
ha |
|
5 |
2468 |
7 |
yo‘q |
While17
Musbat butun N va raqam R (0..9) berilgan. N yozuvida R raqami necha marta uchrashini hisoblang.
|
№ |
N |
R |
Uchrash soni |
|
1 |
12342 |
2 |
2 |
|
2 |
50505 |
0 |
2 |
|
3 |
7777 |
7 |
4 |
|
4 |
10001 |
0 |
3 |
|
5 |
67890 |
1 |
0 |
While18
Musbat butun N berilgan. N toq raqamlardan iboratmi (faqat 1,3,5,7,9) — ha/yo‘q ko‘rinishida chiqaring.
|
№ |
N |
Natija |
|
1 |
13579 |
ha |
|
2 |
12345 |
yo‘q |
|
3 |
999 |
ha |
|
4 |
5713 |
ha |
|
5 |
246 |
yo‘q |
While19
Musbat butun N berilgan. N juft raqamlardan iboratmi (faqat 0,2,4,6,8) — ha/yo‘q ko‘rinishida chiqaring.
|
№ |
N |
Natija |
|
1 |
2468 |
ha |
|
2 |
204 |
ha |
|
3 |
2202 |
ha |
|
4 |
2245 |
yo‘q |
|
5 |
8642 |
ha |
While20
Musbat butun N berilgan. N palindrom (orqadan o‘qiganda ham o‘sha son) ekan-emasligini aniqlang.
|
№ |
N |
Natija |
|
1 |
121 |
ha |
|
2 |
1331 |
ha |
|
3 |
1234 |
yo‘q |
|
4 |
909 |
ha |
|
5 |
1001 |
ha |
While21
Musbat butun A va B berilgan. Evklid algoritmi (ayirish usuli) orqali ularning EKUB(A, B) ni hisoblang.
|
№ |
A |
B |
EKUB(A, B) |
|
1 |
18 |
12 |
6 |
|
2 |
27 |
9 |
9 |
|
3 |
30 |
21 |
3 |
|
4 |
25 |
15 |
5 |
|
5 |
100 |
85 |
5 |
While22
Musbat butun A va B berilgan. Evklid algoritmining bo‘lish qoldig‘i usuli orqali EKUB(A, B) ni hisoblang (qoldiqni while bilan aniqlab boring).
|
№ |
A |
B |
EKUB(A, B) |
|
1 |
18 |
12 |
6 |
|
2 |
27 |
9 |
9 |
|
3 |
100 |
35 |
5 |
|
4 |
81 |
45 |
9 |
|
5 |
98 |
56 |
14 |
While23
Musbat butun A va B berilgan. EKUK(A, B) ni formula EKUK = A·B / EKUB orqali toping (ko‘paytirish/bo‘lishdan foydalanish shart emas).
|
№ |
A |
B |
EKUB |
EKUK(A, B) |
|
1 |
6 |
8 |
2 |
24 |
|
2 |
12 |
15 |
3 |
60 |
|
3 |
9 |
10 |
1 |
90 |
|
4 |
18 |
30 |
6 |
90 |
|
5 |
21 |
14 |
7 |
42 |
While24
Musbat butun p va q (q > 0) berilgan. p/q kasrning oddiy qisqartirilgan ko‘rinishini chiqarish (p va q ni EKUB ga bo‘lish).
|
№ |
p |
q |
EKUB |
Qisqartirilgan kasr |
|
1 |
6 |
9 |
3 |
2/3 |
|
2 |
10 |
20 |
10 |
1/2 |
|
3 |
15 |
25 |
5 |
3/5 |
|
4 |
18 |
27 |
9 |
2/3 |
|
5 |
7 |
13 |
1 |
7/13 |
While25
Musbat butun A va B berilgan. A/B ni bo‘lish orqali emas, faqat ayirish orqali bo‘luvchi va qoldiq sifatida chiqarish (While3 ga o‘xshash, lekin boshqa kirishlar bilan).
|
№ |
A |
B |
Butun qism |
Qoldiq |
|
1 |
17 |
5 |
3 |
2 |
|
2 |
28 |
6 |
4 |
4 |
|
3 |
33 |
7 |
4 |
5 |
|
4 |
19 |
4 |
4 |
3 |
|
5 |
41 |
8 |
5 |
1 |
While26
Musbat butun N va haqiqiy X berilgan.
1 + X + X² + … ketma-ketlik had qiymati eps dan kichik bo‘lgunga qadar hisoblanadi; while orqali oraliq darajalarni ko‘paytirishsiz yig‘ish.
|
№ |
X |
eps |
Yig‘indi (S) taxminan |
Hadlar soni |
|
1 |
0.5 |
0.01 |
1.99 |
6 |
|
2 |
0.3 |
0.001 |
1.428 |
8 |
|
3 |
0.8 |
0.01 |
4.95 |
8 |
|
4 |
0.2 |
0.0001 |
1.25 |
9 |
|
5 |
0.9 |
0.01 |
9.47 |
10 |
While27
Musbat haqiqiy L va butun N berilgan.
Uzunligi L bo‘lgan kesma bo‘ylab 1/N dan boshlab teng bo‘linmalarni hosil qilib, bo‘linish nuqtalarini chiqarish (while bilan har safar H qo‘shib boring).
|
№ |
L |
N |
H (bo‘linma uzunligi) |
Bo‘linish nuqtalari |
|
1 |
10 |
5 |
2 |
2, 4, 6, 8, 10 |
|
2 |
12 |
4 |
3 |
3, 6, 9, 12 |
|
3 |
9 |
3 |
3 |
3, 6, 9 |
|
4 |
8 |
2 |
4 |
4, 8 |
|
5 |
15 |
5 |
3 |
3, 6, 9, 12, 15 |
While28
Musbat butun N (> 0) berilgan. Fibonacci ketma-ketligining dastlabki N hadi qiymatlarini while yordamida chiqarish.
|
№ |
N |
Fibonacci ketma-ketligi |
|
1 |
5 |
1, 1, 2, 3, 5 |
|
2 |
7 |
1, 1, 2, 3, 5, 8, 13 |
|
3 |
8 |
1, 1, 2, 3, 5, 8, 13, 21 |
|
4 |
3 |
1, 1, 2 |
|
5 |
10 |
1, 1, 2, 3, 5, 8, 13, 21, 34, 55 |
While29
Musbat butun N berilgan. N dan 1 gacha bo‘lgan butun sonlar yig‘indisini while yordamida hisoblang.
|
№ |
N |
Yig‘indi |
|
1 |
5 |
15 |
|
2 |
10 |
55 |
|
3 |
7 |
28 |
|
4 |
3 |
6 |
|
5 |
20 |
210 |
While30
Musbat A, B, C berilgan. O‘lchami A × B bo‘lgan to‘g‘ri to‘rtburchak ichiga tomoni C bo‘lgan maksimal sonli kvadratlarni joylashtirish (ustma-ustsiz). Kvadratlar sonini toping. Ko‘paytirish va bo‘lishdan foydalanmang.
|
№ |
A |
B |
C |
Kvadratlar soni |
|
1 |
10 |
6 |
2 |
15 |
|
2 |
8 |
4 |
2 |
8 |
|
3 |
9 |
9 |
3 |
9 |
|
4 |
12 |
5 |
2 |
15 |
|
5 |
15 |
10 |
5 |
6 |
Topshiriqlar https://ptaskbook.com/ru/tasks/index.php saytidan olindi
